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Abstract

The density of polynomials is straightforward to prove in Sobolev spaces W*?((a, b)), but
there exist only partial results in weighted Sobolev spaces; here we improve some of these
theorems. The situation is more complicated in infinite intervals, even for weighted L” spaces;
besides, in the present paper we have proved some other results for weighted Sobolev spaces in
infinite intervals.
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1. Introduction

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics
(see e.g. [HKM,K,Ku,KO.,KS,T]). In [EL,LELWI1,ELW2] the authors study some
examples of Sobolev spaces with respect to general measures instead of weights, in
relation with ordinary differential equations and Sobolev orthogonal polynomials.
The papers [R1,R2,RARP1,RARP2] are the beginning of a theory of Sobolev spaces
with respect to general measures. We are interested in the relationship between this
topic and Approximation Theory in general, and Sobolev orthogonal polynomials in
particular.
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Let us consider 1 <p< o and g = (y, ..., 1) a vectorial Borel measure in R with
A = U%_ysupp ;. The Sobolev norm of a function f of class C*(R) in W*(4, ) is
defined by

k
||f||’;/[/k.p(A"#) = Z /|f</)|p d,u/
J=0

We talk about Sobolev norm although it can be a seminorm; in this case we will take
equivalence classes, as usual.

If every polynomial belongs to LP(uy)NLP () --- nLP(p), we denote by
Pk?(A, 1) the completion of polynomials P with the norm of W*?(4,u). By a
theorem in [LP] we know that, if 4 is a compact set, the zeroes of the Sobolev
orthogonal polynomials with respect to the scalar product in W*2(4,u) are
contained in the disk {z:|z|<2||M||}, where the multiplication operator (Mf)(x) =
x f(x) is considered in the space P?(4, u). Consequently, the set of the zeroes of the
Sobolev orthogonal polynomials is bounded if the multiplication operator is
bounded. The location of these zeroes allows to prove results on the asymptotic
behaviour of Sobolev orthogonal polynomials (see [LP]).

In [R2,RARP2] there are necessary conditions and sufficient conditions for M to
be bounded. A fundamental tool in this work is to know what are the elements in
P*2(A, ). In fact, this is a central problem in Approximation Theory: find the class
of functions which can be approximated by polynomials or smooth functions with a
given norm. If 4 is a compact set, it is equivalent to approximate by polynomials or
C*(R) functions, since the Bernstein’s proof of Weierstrass’ Theorem (see e.g. [D, p.
113]) gives that every function in C¥([a,b]) can be approximated by polynomials
uniformly up to the kth derivative. However, if 4 is non-compact it is more difficult
to approximate functions by polynomials than by functions in C* (R).

In [RARP2, Theorem 4.1], there are sufficient conditions in order to have
Pk? (A, ) = WkP(A, ), if we define in a correct way these Sobolev spaces. In this
paper, we obtain improvements of Theorem 4.1 in [RARP2] in the case of 4
compact and new results for the non-compact case. Observe that Theorem 4.3 in
[RARP2] (see Theorem E) gives a criterion to obtain the density of smooth
functions in the non-compact case, but it cannot be applied to have the density of
polynomials.

Now, let us state the main results here. We refer to the definitions in the next
section. In the paper, the results are numbered according to the section where they
are proved.

First, we have four theorems which give sufficient conditions for C(R) to be
dense in WK?(A, 1), if A is a compact interval. Observe that under this hypothesis on
4, C*(R) is dense if and only if C*(R) or P is dense.

Theorem 3.1. Let us consider 1 <p< oo and p = (py, ) a finite p-admissible vectorial
measure with A= [a,b] and w\ =du,/dxeB,((a,b)). Then C*(R) is dense in
W ([a,b], ).
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Theorem 3.2. Let us consider 1<p<oo, 0<m<k and p= (u,..., 1) a finite
p-admissible vectorial measure with A = [a,b] and C* (R) dense in W =" ([a, b], 1).
Assume  that ([a,b], (W, ..., 1)) €Co if m<k. Assume also that we have
either:

(1) Q) 4,1,
(2) Q=Y = (a,b] and there exists ¢>0 such that ul,
vectorial measure (0, ..., 0, W, -y 1)

| is a right completion of the

a,a+e

Then C*(R) is dense in W< ([a,b], 1).

Theorem 3.3. Let us consider 1<p<oo and p= (U, ..., 1) a finite p-admissible
vectorial measure with A = [a, b] and wy = dy; /dx € B,((a,b]). Assume that we have
either:

(1) a is right (k — 2)-regular if k=2,
(2) there exists ¢>0 such that ,u|[a’aﬂ] is a right completion of (0, ...,0, u;_y, p) if
k=2.

Then C*(R) is dense in W*P([a,b], 1).

Theorem 3.4. Let us consider 1 <p < o0, a compact interval I and a finite p-admissible
vectorial measure u = (W, ..., W) with A = I. Assume that there exist ayel, an integer
0<r<k and positive constants c,d such that

(1) du o (x)<clx —aol” du(x) in lag — 6,a0 + 0|1 for r<j<k,
(@) wi = dyy Jdxe By(I\ {ao}),
(3) if r>0, ag is (r — 1)-regular.

Then C* (R) is dense in W+ (I, 10).

The following result gives a sufficient condition for P to be dense in W (4, u),
without hypothesis on the support 4.

Theorem 4.1. Let us consider 1<p<oo and u= (g, ..., 1) a p-admissible
vectorial measure. Assume that there exist acA and a positive constant ¢ such
that

cllglweoag <lg@] +1g' @] + -+ + 19" (@) + 116" 154,

for every ge VKP (A, u). Then, P is dense in W*P(A, ) if and only if P is dense in
Lp<Amuk)'

As an application of this theorem we can obtain many results for particular
weights. We make the computations for the following cases: Laguerre, Freud and
weights of fast decreasing degree.
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Proposition 4.1. Consider 1 <p< oo and a vectorial weight w in (0, c0), with

() 111_,(x)<¢,~xﬁf,for 0<j<k, wi(x)=cpxPe in (0,a),

(2) wi(x) St ENE=0Pe= | for 0<j <k, wi(x)=cxx*e™™, in (a, o0),
where weR, a,¢,7,¢;>0 and ;> —1, for 0<j<k. Then the polynomials
are dense in W*?([0, o0),w) if they are dense in L((0, o0),wi) and B;=PBi —
(k —j)p, for 0<j<k.

Corollary 4.1. Consider 1<p< oo and a vectorial weight w, with w;(x)=x%e** in

(0, c0), for 0<j <k, where 82%, >0 and o;> — 1, for 0<j<k. Then the polynomials

are dense in W*?([0, c0),w) if oy — (k — j)p<oy <oy + (k —j)(e — 1)p, for 0<j<k.

Proposition 4.2. Consider 1 <p< co and a vectorial weight w in R, with

(1 w_,»(x)<c_/»|x|“+(k7j><”7l>”e’)’|x|ﬂ,for 0<j <k, wi(x)=cr|x|"e M, in (B, o0),
(2) wj(x)<cj|x|“l+(k7j>(8/7l”’e‘“"'gl,for 0<j<k, wk(x)>ck|x\“/e‘2/‘x|n/, in (—o0,—A),
(3) wi(x)eL' (-4, B)), for 0<j<k, wi(x)eB,([—4, B)),
where o,/ €R, ¢,6' =1 and A, B, 2,2, ¢;>0, for 0<j<k. Then the polynomials are
dense in WP (R, w) if they are dense in LP(R,wy).

Corollary 4.2. Consider 1<p<oo and a vectorial weight w in R, with
wj(x)x|x|°‘fe‘“x|ﬂ in R, for 0<j<k, where ¢=1, 1>0 and o;> — 1, for 0<j<k.
Assume also that o <p — 1 if p>1, and o <0 if p = 1. Then the polynomials are dense
in WhP(R,w) if oy <oy + (k —j)(e — 1)p, for 0<j<k.

Proposition 4.3. Consider 1<p<oo and a vectorial weight w, with

where n>1 and ¢,A1,22, ..., An, Co,C1, ...,k >0. Then the polynomials are dense in
WP (R, w) if they are dense in LP(R,wy).

Corollary  4.3. Consider 1<p<oo and a vectorial weight w, with
wi(x)=exp_; ;. (1x[°) in R, for 0<j<k, where n>1 and ¢, 11,23, ..., 2,>0. Then
the polynomials are dense in W*? (R, w).

We also obtain results which allow to decide in many cases when two norms are
comparable. Now we present the notation we use.

Notation: In the paper k=1 denotes a fixed natural number; obviously
WO (A, ) = L (4, ). All the measures we consider are Borel and positive on R;
if a measure is defined in a proper subset £ <R, we define it in R\ E as the zero
measure. Also, all the weights are non-negative Borel measurable functions defined
on R. If the measure does not appear explicitly, we mean that we are using Lebesgue
measure. We always work with measures which satisfy the decomposition dy; =
d(p;)s +d(w). = d(w;), + hdx, where (u;), is singular with respect to Lebesgue
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measure, (i), is absolutely continuous with respect to Lebesgue measure and / is a
Lebesgue measurable function (which can be infinite in a set of positive Lebesgue
measure); obviously every o-finite measure belongs to this class. Given 0<m<k, a
vectorial measure p and a closed set E, we denote by W*?(E, u) the space
WP(ANE, u|) and by WK (A, i) the space W ="2(A, (u,, ..., 1)). We denote
by supp v the support of the measure v. If 4 is a Borel set, | 4|, x4, 4 and #4 denote,
respectively, the Lebesgue measure, the characteristic function, the closure and the
cardinality of 4. By ) we mean the jth distributional derivative of f. P denotes the
set of polynomials. We say that an n-dimensional vector satisfies an one-dimensional
property if each coordinate satisfies this property. Finally, the constants in the
formulae can vary from line to line and even in the same line.

The outline of the paper is as follows. Section 2 presents most of the definitions we
need to state our results; we also collect the technical results of [R2,RARP1,RARP2]
that we need. Section 3 is dedicated to the proof of the theorems on density for
measures with compact support. In Section 4 we prove the theorems on density
without hypothesis on the support. We prove some results on comparable norms in
Sobolev spaces in Section 5.

2. Definitions and previous results

Obviously, one of our main problems is to define correctly the space W (A, ).
There are two natural definitions:

(1) Wk»(4, ) is the biggest space of (classes of) functions f which are regular
enough to have | f|[jywp(4,) < 0.

(2) Wk#(A, p) is the closure of a good set of functions (e.g. C* (R) or P) with the
norm || - ||Wk-1’(A,y)'

However, both approaches have serious difficulties:

We consider first approach (1). It is clear that the derivatives f) must be
distributional derivatives in order to have a complete Sobolev space. Therefore, we
need to restrict the measures u to a class of p-admissible measures (see Definition 8).
Roughly speaking u is p-admissible if (,uj)s, for 0<j<k, is concentrated in the set of
points where ) is continuous, for every function f of the space, because otherwise
fY) is determined, up to zero-Lebesgue measure sets. This will force (u)s to be
identically zero. However, there will be no restriction on the support of (y),.

This reasonable approach excludes norms appearing in the theory of Sobolev
orthogonal polynomials. Even if we work with the simpler case of the weighted
Sobolev spaces W*”(A,w) (measures without singular part) we must impose that wj
belongs to the class B, (see Definition 2) in order to have a complete weighted
Sobolev space (see [KO,RARPI]).

Approach (2) is simpler: a classical theorem says that the completion of every
normed space exists (e.g. (C*(R), || - [|yroa,) OF (Pl |[eois,))- However, we
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have two difficulties. The first one is evident: we do not have an explicit description
of the Sobolev functions as in (1) (in [RARP2, Section 4] there are several theorems
which give that both definitions of Sobolev space are the same for p-admissible
measures). The second problem is worse: the completion of a normed space is by
definition a set of equivalence classes of Cauchy sequences. In many cases this
completion is not a function space (see [R2, Theorem 3.1] and its Remark). Here, we
work with the first approach; see [R2] in order to deal with the second one.

First of all, we explain the definition of generalized Sobolev space in [RARP1]. We
start with some preliminary definitions.

Definition 1. We say that two functions u, v are comparable on the set A4 if there are
positive constants ¢y, ¢; such that ¢;v(x) <u(x) <cyv(x) for almost every xe 4. Since
measures and norms are functions on measurable sets and vectors, respectively, we
can talk about comparable measures and comparable norms. We say that two
vectorial weights or vectorial measures are comparable if each component is
comparable.

In what follows, the symbol a=b means that a and b are comparable for ¢ and b
functions, measures or norms.

Obviously, the spaces L?(A4,u) and LP(A,v) are the same and have comparable
norms if ¢ and v are comparable on 4. Therefore, in order to study Sobolev spaces
we can change a measure p to any comparable measure v.

Next, we shall define a class of weights which plays an important role in our
results.

Definition 2. We say that a weight w belongs to B,([a, b]), with 1<p< oo, if
w e L=V ([a, b]).

Also, if J is any interval we say that we B,(J) if we B,(I) for every compact interval
I=J. We say that a weight belongs to B,(J), where J is a union of disjoint intervals
Uieadi, if it belongs to B,(J;), for ie 4.

Remark. If du = wdx in some interval J, with we B,(J), then the Lebesgue measure
in J is absolutely continuous with respect to p.

Observe that if v=w in J and we B,(J), then ve B,(J).

The class B,(R) contains the classical A,(R) weights appearing in Harmonic
Analysis (see [Mul] or [GR]). The classes B,(Q2), with Q=R", and 4,(R") (1<p< o)
have been used in other definitions of weighted Sobolev spaces in [K,KO],
respectively.

Definition 3. We denote by 4C([a, b]) the set of functions absolutely continuous in
[a,b], i.e. the functions f € C([a, b]) such that f(x) — f(a) = [ f'(¢) dt for all x€[a, b].
If J is any interval, 4Ci,.(J) denotes the set of functions absolutely continuous in
every compact subinterval of J.
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Definition 4. Let us consider 1<p<oo and a vectorial measure u = (u, ..., )
with absolutely continuous part w = (wo, ..., wx). For 0<j<k we define the
open set

Q; = {xeR : 3 an open neighbourhood ¥V of x with w;eB,(V)}.

Observe that we always have w; € B,(Q;) for any 1<p< oo and 0<j<k. In fact, &;
is the greatest open set U with w;eB,(U). Obviously, Q; depends on p and g,
although p and u does not appear explicitly in the symbol Q;. Applying Holder
inequality it is easy to check that if /) e L7(Q;, w;) with 1<j<k, then fWeL]l ()
and fU=) € ACioc(©)).

Hypothesis. From now on we assume that w; is identically 0 on the complement
of .Q/'.

We need this hypothesis in order to have complete Sobolev spaces (see
[KO,RARPI])).

Remark. This hypothesis is satisfied, for example, if we can modify w; in a set of zero
Lebesgue measure in such a way that there exists a sequence o, 0 with wj’1 {(otn, 0]}
open for every n. If w; is lower semicontinuous, then this condition is satisfied.

The following definitions also depend on p and p, although p and p do not appear
explicitly.

Let us consider 1<p<oo, u= (yy,..., ) a vectorial measure and yed. To
obtain a greater regularity of the functions in a Sobolev space we construct a
modification of the measure u in a neighbourhood of y, using the following
Muckenhoupt weighted version of Hardy inequality (see [Mu2,M, p. 44]). This
modified measure is equivalent in some sense to the original one (see Theorem A).

Muckenhoupt inequality I. Let us consider 1 <p< oo and p, jt, measures in (a, b) with
wy = du,/dx. Then there exists a positive constant ¢ such that

‘ng(z)dt

for any measurable function g in (a,b), if and only if

<clg]

Lr((a:blm)
U((”b] uu(J)

sup o((a, V])||W1_1 ||L1/u)—n<[r,b]) < 0.
a<r<b

Definition 5. A vectorial measure g = (f, ..., fix) is a right completion of a vectorial
measure 4 = (g, --., 1) with respect to y, if i == w; and there is an ¢>0 such that
fij = p; in the complement of (y,y + ¢] and

fij = /lj+ﬂj in (y7y+8} for 0<]<k7
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where fi; is any measure satisfying:

@) g,y +e)<oo
(i) Ap(fy, fij+1) < oo, with

Ap(v,0) = sup  v((y,7])

(&)
y<r<y+e dx
The Muckenhoupt inequality guarantees that if /) e L7 (i;) and /U e 1P (i),

then 1) e L7(g3;). If we work with absolutely continuous measures, we also say that a
vectorial weight w is a completion of u (or of w).

LY0=D([r,y+¢])

Example. It can be shown that the following construction is always a completion: we
choose ;=0 if w1 ¢B,((v,y+e]); if wip1€B,([y,y+¢]) we set w;(x):=1 in
v,y +e]; and if Wi €B,((v,y + &) \B,y([v,y +¢|) we take w;(x) =1 for xe[y+

¢/2,y +¢), and
e
Lm0y
Wi(x) = if 1<p<oo,
I gt + S OB i) =1

for xe(y,y +¢/2).

Remark. (1) We can define a left completion of u with respect to y in a similar way.

(2) If w1 € B,y ([y,y + ¢]), then A,(f;, wj1) < co for any measure fi; with g;((y,y +
¢]) < oo. In particular, A,(1,W;1)< 0.

(3) If p, v are two vectorial measures such that y; > cv; for 0<j<k and 7 is a right
completion of v, then there is a right completion g of p, with fi; = ¢¥; for 0<j <k (it is
enough to take fi; = ;). Also, if u, v are comparable measures, 7 is a right completion
of v if and only if it is comparable to a right completion i of u.

(4) We always have i = w and ;> y; for 0<j<k.

Definition 6. For 1 <p< oo and a vectorial measure i, we say that a point yeR is
right j-regular (respectively, left j-regular), if there exist ¢>0, a right completion
(respectively, left completion) of u and j<i<k such that w; = d;/dxeB,([y,y + ¢])
(respectively, B,([y — ¢,y])). Also, we say that a point yeR is j-regular, if it is right
and left j-regular.

Remark. (1) A point yeR is right j-regular (respectively, left j-regular), if at least one
of the following properties is verified:

(a) There exist ¢>0 and j<i<k such that w;e B,([y,y + ¢]) (respectively, B,([y —
¢,7])). Here we have chosen f; = 0.
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(b) There exist >0, j<i<k, >0, and 6<(i — j)p — 1, such that
wi(x)=alx —y[° for almost every xe[y,y + €]

(respectively, [y — &, y]). See [RARP1, Lemma 3.4].

(2) If y is right j-regular (respectively, left), then it is also right i-regular
(respectively, left) for each 0<i<;.

(3) We can take i =j+ 1 in this definition since by the second remark after
Definition 5 we can choose w; = w; + 1€ B,([y,y +¢]) for j<I<i, if j+ 1 <i.

(4) If u,v are two vectorial measures with the same absolutely continuous part,
then y is right j-regular (respectively, left) with respect to u if and only if it is right j-
regular (respectively, left) with respect to v.

When we use this definition, we think of a point {b} as the union of two half-
points {b*} and {b~}. With this convention, each one of the following sets:

(a,0)(b,c)u{b’} = (a,b)u b, ) #(a;c),
(@,b) (b,c)u{b"} = (a,b"]u(b,c)#(a;c)
has two connected components, and the set
(a,b)u (b,c)u{b }u{b*} = (a,b)u(b,c)u{b} = (a,c)

is connected.

We only use this convention in order to study the sets of continuity of functions:
we want that if fe C(4) and f e C(B), where A and B are union of intervals, then
feC(4AuB). With the usual definition of continuity in an interval, if
feC(la,b))nC([b,c]) then we do not have feC([a,c]). Of course, we have
feC([a,c]) if and only if f € C([a,b7]) n C([b™, ¢]), where, by definition, C([bT, c]) =
C([b,c]) and C(la,b7]) = C([a,b]). This idea can be formalized with a suitable
topological space.

Let us introduce some notation. We denote by QY the set of j-regular points or
half-points, i.e., ye QY if and only if y is j-regular, we say that y* Q) if and only if
y is right j-regular, and we say that y~eQY) if and only if y is left j-regular.
Obviously, Q%) = ¢ and Qi1 U= QY. Observe that QV) depends on p (see
Definition 6).

Remark. If 0<j<k and [ is an interval, /= Q") then the set IN(Qjp1v - UQy) is
discrete (see the Remark before Definition 7 in [RARP1]).

Definition 7. We say that a function /4 belongs to the class AClOC(Q(f)) if he ACioc(1)
for every connected component / of QU

Definition 8. We say that the vectorial measure u = (uy, ..., ;) is p-admissible if
(H_/)S(R\QU)) =0 for 1 <j<k.



194 J.M. Rodriguez | Journal of Approximation Theory 120 (2003) 185-216

We use the letter p in p-admissible in order to emphasize the dependence on p
(recall that Q) depends on p).

Remark. (1) There is no condition on supp(uy)s-
(2) We have (y), = 0, since Q%) = 0.
(3) Every absolutely continuous measure is p-admissible.

Definition 9 (Sobolev space). Let us consider |<p< oo and u= (uy, ..., ) a p-
admissible vectorial measure. We define the Sobolev space W (4, ) as the space of
equivalence classes of

VAP (A, u) = {f : A>C/fV e ACoe(QY)  for 0<j<k and

||f(j)||u(4,u,)< oo for 0<j<k}

with respect to the seminorm

1/p
U N wroag = (ZU ||u»<4u> :

Remark. (1) This definition is natural since when the (y;)-measure of the set where

| £¥] is not continuous is positive, the integral [|fV) ’d(u;), does not make sense.
(2) If we consider Sobolev spaces with real valued functions every result in this
paper also holds.
At this moment we can consider also norms as follows:

1 0 1
/1P = / P+ / P+ /0 P 1O

1 1
A1 = / P+ / T 1))

In the second example, we can write | /(0)|” instead of | f(07)}?, since f is not defined
at the left of 0, and then this causes no confusion. Obviously, we always write
(a+ b)dy, instead of ady; + bo,:.

Definition 10. Let us consider 1 <p< oo and p a p-admissible vectorial measure. Let
us define the space #°(4, u) as

A1) = (g @0~ Clae V(@ lgn) gl g, =0}
lg

A (A, p) is the equivalence class of 0 in W » ( Oyl oo)- It plays an important role
in the general theory of Sobolev spaces and in the study of the multiplication operator
in Sobolev spaces in particular (see [R2,RARPI1,RARP2] and Theorems A and B).
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Definition 11. Let us consider 1 <p< oo and u a p-admissible vectorial measure. We
say that (4, u) belongs to the class % if there exist compact sets M,, which are a
finite union of compact intervals, such that

(i) M, intersects at most a finite number of connected components of Q) U --- U Qy,
(ii) A (My, 1) = {0},
(i) My<= M1,
(iv) u,M, = QO

We say that (4,u) belongs to the class % if there exists a measure ;=
o+, cp Cmdx, With ¢, >0, {x,}=Q® DN and (4,1/)e%,, where i =
(UG 1, --- ) 1s minimal in the following sense: there exists {M,} corresponding
to (4,1') €%y such that if ug = py — cm,0x,, with moeD and p" = (ug, py, -, ),
then " (M, /") #{0} if x,,, € M,,.

Remark. (1) Condition (4,u)e% is not very restrictive. In fact, the proof of
Theorem A (see [RARPI1, Theorem 4.3]) gives that if Q(O)\(Ql U...uUQ) hasonly a
finite number of points in each connected component of Q) then (4, u)e®. If
furthermore #°(4, 1) = {0}, we have (4, u) €%.

(2) The proof of Theorem A gives that if for every connected component A of
QiU - U we have (A, u) = {0}, then (4, u) € %y. Condition #supp py|5,. o0 =k
implies .#" (A, u) = {0}.

(3) Since the restriction of a function of (4, 1) to M,, is in A" (M, u) for every n,
then (4, ) € 6y implies (4, 1) = {0}.

(4) If (4, n) €%y, then (4, 1) e, with y' = p.

The next results, proved in [RARPI1], play a central role in the theory of
Sobolev spaces with respect to measures (see the proofs in [RARPI1, Theorems 4.3
and 5.1]).

Theorem A. Let us suppose that 1<p<oo and p= (yg,...,1) is a p-admissible
vectorial measure. Let K; be a finite union of compact intervals contained in Q). for
0<j<k and i a right (or left) completion of . Then:

(@) If (4,u)e%y there exist positive constants ¢y = ¢|(Ko, ...,Kp—1) and ¢, =
Cz(ﬂ, Ky, ..., kal) such that

k-1
c1 ) M9V iy <19l weoa
=0

Cz||g|\Wkw<A,,z)S||9\|Wk~p(4.u) Vge Vk‘p(ﬁvﬂ)

(b) If (A,1n)e€ there exist positive constants c3 = c3(Ko, ..., Kr_1) and c4 =
ca(fi, Ko, ..., Ki_1) such that for every geV*P(A,u), there exists goe VP (A, p),
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independent of Ky, ..., Kj_1, c3, c4 and fi, with

llg0 — g”W"'-P(A,u) =0,

k—1
e Z(; 1196112 ) < g0l oy = Nlgllwoga
J=

callgol| Who(4,0) S llgll WEp (A1)

Furthermore, if go,fo are these representatives of g,f, respectively, we have for the
same constants ¢z, 4

k—1
33 a8 = 1N e ey <Nlg = Fllwioia g
j=0

callgo _f0||WA'-I’(A,;Z) <llg _xf”Wl"/’(A“u)'

Remark. Theorem A is proved in [RARPI1] with the additional hypothesis that
[ = g — pis absolutely continuous, since [RARP1] only uses absolutely continuous
completions, but the same proof also works in the general case.

Theorem B. Let us consider 1<p<oo and pu= (u, ..., 1) a p-admissible vectorial
measure with (A, i) e%6. Then the Sobolev space W*P(A, 1) is complete.

A result on density of smooth functions is the following. It is a particular case of
Theorem 4.1 in [RARP2]. We do not write the complete statement of Theorem 4.1 in
[RARP2] since we would need several definitions.

Theorem C. Let us consider 1<p<oo and pu= (u,..., 1) a finite p-admissible
vectorial measure with A = [a, b]. If wy = dp; /dx e By([a, b)), then C (R) is dense in
the Sobolev space WP ([a,b], 1).

Remark. Under the hypotheses of Theorem C, p is p-admissible if and only if
(1), = 0, since Q¥ = [a, b].

We need more results appearing in [R2,RARPI1,RARP2]. An immediate
modification of Lemma 3.3 in [RARPI] gives the following proposition.

Proposition A. Let 1<p< oo and let p= (..., 1) be a p-admissible vectorial
measure in [a, b], with wy, = duy, /dx e B,((a,b]) for some 0<ko<k. If we construct a
right completion [ of w with respect to the point a taking ¢ = b — a, and [; = y; for
ko<j<k, then there exist positive constants c; such that

ko ko—1 _
C.‘/'||g(j>||[/’([a,b]ﬁﬁj) S Z ||g(i>||U’([a,b]ﬁ/,t,») + Z 9" (b)],
= i=j



J.M. Rodriguez | Journal of Approximation Theory 120 (2003) 185-216 197

for all 0<j<ko and ge V*?([a,b], u). In particular, there is a positive constant ¢ such
that
ko—1
llgllwer as.m) < N9l weo apw + Z gV ()],
Jj=0

for all ge V*([a,b], ).
Corollary 4.3 in [RARPI] gives the following result.

Corollary A. Let us suppose that 1<p<oo and u= (uy, ..., 1) is a p-admissible
vectorial measure. Let K; be a finite union of compact intervals contained in QY for

0<j<k. Then:
(@) If (4, pn) b there exists a positive constant ¢y = ¢|(Ko, ..., Kix_1) such that

k—1
j k,
> MgV Ny <llollwroagy Vo€ V(4 p).
=0

(b) If (4, 1) €% there exists a positive constant ¢; = ¢3(Ky, ..., Kk—1) such that for
every ge VFP(A, ), there exists goe VP (A, u) (the same function as in Theorem A),
with

[lgo — g||Wk~p(A,H) =0,

k—1
j+1
ay 0: 196121y < N9l lweoa g = 119l o a -
J=

Furthermore, if go,fo are these representatives of g,f, respectively, we have for the
same constant ¢,

k—1
j+1 j+1
z; las ™ =17 gy <11g = Fllwo e

A simple modification in the proof of Corollary A gives Corollary B. Recall
that we use the symbol W*7(A u) to denote the Sobolev space W,
(Aﬂ (/“tma muk))

Corollary B. Let us suppose that 1<p<oo and p= (uy, ..., 1) is a p-admissible
vectorial measure. For some 0<m<k, assume that (A, (i,,, ..., 1)) €%o. Let K be a

m—1

finite union of compact intervals contained in Q"V. Then there exists a positive

constant ¢, = ¢ (K) such that

allgll o <Ngllwrmoa V9€ VET (A, ).

An immediate computation gives the following result.
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Lemma A. Let us consider 1<p<oo and u= (y, ..., ;) a p-admissible vectorial
measure with

dpy (%) < lx — aol"dpy (x)
for 0<j<k, apeR and x in an interval 1. Let ¢ € C*(R) be such that supp @' S [/, 4 +
1], with max{|X — ao|, |2+t — ao|} <cat and ||(p(7)||Lx(1) <et™ for 0<j<k. Then,
there is a positive constant ¢y which is independent of I,ay, A, t, u, ¢ and g such that

legllwer(aw < ol

for every ge WP (A, u) with supp(gg)<I.
The next result is a consequence of Corollary 3.2 in [R2].

Corollary C. Let us consider 1<p<oo and u= (uy,...,1;) a locally finite p-
admissible vectorial measure. Assume that there exist ayeR, an integer 0<r<k, an
open neighbourhood U of ay and ¢>0 such that

g1 (x) <clx — a0 dpy ()

for xeU and r<j<k. Then ay is neither right nor left r-reqular.

The following theorems [RARP2, 4.2 and 4.3] give density results for measures
which can be obtained by “‘gluing” simpler ones.

Theorem D. Let us consider 1 <p< o0, —o0o<a<b<c<d<oo. Let u= (tg, -, W)
be a p-admissible vectorial measure in |a,d|, and assume that there exists an interval
I<[b,c] with (I,n)e6y and p(I)<oo for 0<j<k. Then C*(R) is dense in
WP ([a,d), 1) if and only if C* (R) is dense in W*?([a, c], ) and W*?([b, d], u).

Theorem E. Let us consider 1<p< oo and {a,}, {b,} strictly increasing sequences of
real numbers (n belonging to a finite set, to Z, 7" or ") with a, <b, for every n. Let
w= (U, ..., ) be a p-admissible vectorial measure in (o,f) = v,(an,by), with
—w <a<f< oo, Assume that for each n there exists an interval I, < [a,.1,b,] with
(In, W) € %o and p;(I,) < oo for 0<j<k. Then C*(R) is dense in W*?([a, B], ) if and
only if C*(R) is dense in every W*?([a,,b,], ).

3. The case of compact support

Recall that under the hypothesis 4 compact, it is equivalent to prove the density in
Wk? (A, u) of C*(R), C*(R) or P.

Lemma 3.1. Let us consider 1<pi,...,pm<o0 and measures [, ..., I, in a
measurable space X. Let us assume that (X,p) satisfies the conclusion of Lusin
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Theorem, where p = u; + -+ + w,,. Then any function in L' (X, u) 0 - 0 LP(X, )
can be approximated in the norm

e =1 Mooy + 1 Home,)

by functions in C.(X).

Remark. Recall that any finite measure in R satisfies the conclusion of Lusin
Theorem.

Proof. We denote by S the set of simple and measurable functions s on X with
complex values such that

p({xeX : s(x)#0}) < c0.

We prove now that any function in I”'(X,p)n---nLP(X,p,) can be approxi-
mated in the norm |||y by functions in S. Let us consider a function f in
(X, u) 0 nLP(X, p,,,). Without loss of generality, we can assume that f>0.
As usual, for neN and 1<i<n2" we define

Ey=f"(i—-1)27"i2"), F,=f"(n, o)),
n2"
Sp = Z (i—1)27"xg,, + 115,
=1
Obviously we have 0<s, <f, ||su||y <o and s,€S. The conclusion lim,_, . || f —
sn|ly = 0 is immediate by Dominated Convergence Theorem, since | f — s, <f? for
I<j<m.
Therefore, it is enough to prove the lemma for functions in S. Take se.S and ¢>0.
By hypothesis there exists g€ C.(X) such that |g(x)|<||s||, y , for every xe X, and

g(x) = s(x) except for a set of y-measure less than ¢. Therefore
1 .
llg — SHL”./‘(X,;;/-) <2 /p’||s||L-(X,u)
for each 1<j<m. This finishes the proof. [
Lemma 3.2. Let us consider 1<p<oo and pu= (uy,..., 1) a finite p-admissible

vectorial measure with A< [a,b]. Then any function in W*? (A, 1) n W*([a, b]) can be
approximated by functions in C* (R) with the norm W< (A, p).

Proof. Take any fixed function f in W*?(A, u)~ W5 ([a,b]). Since ; is finite,
Lemma 3.1 gives that for each ¢>0 we can find a function hye C.((a, b)) with
1F® = holl sy <& IS® = ol 1y <e-

By convolution with an approximation of identity, we can find a function
he CF ((a,b)) with

1= holl (<& N1h = ol 13 ) <e-
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Therefore, we have that
11 = B0l a0 < 25 (2, B]) P,
and then
I/® - | 1 (fa ) < €8s 7% - A1 (fa ) <2

Let us fix x € (a, b). The function

k 1
g(x) r=f(XO)+~~+f<k’”(xo)x xo /h d,

belongs to C*(R) and we have
(x - xo)/c—j—l

g(]) (X) ;:f(j)(X()) + e _A'_f(kfl)(X()) m

k—j—1
x—t
/h (k — J*l)d

for 0<j<k. Therefore

179 = < ([ ([ 100 -0l = )
Lr([a,b],u;) ( ]_1)[ J

<l /- Rl L (ja,py) <
for 0<j <k, since y;([a,b]) < co. Hence, we have obtained
S = gl a <ce

with ge C*(R). O
The following results are improvements of Theorem 4.1 in [RARP2].

Theorem 3.1. Let us consider 1 <p< oo and pp = (g, iy a finite p-admissible vectorial
measure with A =[a,b] and w\ =du,/dxeB,((a,b)). Then C*(R) is dense in
W' ([a,b], p)-

Proof. Assume first that wyeB,((a,b]). If wieB,(la,b]), the theorem is a
consequence of Theorem C. So we can assume that wi € B,((a, b])\B,([a, b]); this
implies that « is not right O-regular.

By Lemma 3.2 it is enough to show that any function f in V'*([a,b],u) can be
approximated by functions f, in V'?([a,b],u)~ W' (|a,b]), i.e. by functions
foe V1 (la,b], p) with f!e L' ([a,b)).

If feV'r(la,b],u), then feACoc((a,b]), since wieB,((a,b]). Let us choose
0<t,<1/n such that

Nfa+t)|<|f(x)| for every xe(a,a+ 1/n]. (3.1)
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Define the functions g, = /"y, and
1) =)+ [ o

Observe that Holder inequality gives that f! = g, e L' ([a, b)):

b
1 —1
gl ) = / 7wl P
a+ty

b 1/p y
< (/ |f'|pW1) [wi 11 D (lattbl) <
a+tty

since we have wy € B,((a,b]) and f'e L’([a,b], w). It is clear that

b b a+t,
[ar=smw= [ =atw= [ 1m0
a a a

as n— oo. Observe that py({a}) =0, since a is not right O-regular and u is
p-admissible. This fact and (3.1) give

b a+t,
/ 17 (3) = ()Pt (x) = / () —f(a+ 1) dpol)
=2 "SR dpig(x) =0

as n— oo. Hence, the proof is finished in this case, since f;, converges to f in
W'?(la,b),u) and [ = g, e L' ([a,b)).

A symmetric argument gives the case wy € B, ([a, b)) The general case is easy now.
Choose a compact interval I = [u, f] = (a,b)=Q"). Then V'?([a,b], u)< C(I) and
V2 ([a,b], u) = V'?([a,b], i), with fi = (fip, ;) and dfig = du, + x; dx. We have that
A (I, i) = {0} (see Remark 2 to Definition 11) and even (I, fi) €6, since QON Q
restricted to 7 is the empty set (see Remark 1 to Definition 11). We have proved that
C*(R) is dense in W' ([a, B], i) and W' ([a,b], ). Since (I, i) €%y, Theorem D
gives that C*(R) is dense in W'#([a,b], i) and therefore in W' ([a,b], ). O

Theorem 3.2. Let us consider 1<p<oo, 0O<m<k and u= (g, ..., 1) a finite p-
admissible vectorial measure with A = [a,b] and C* (R) dense in W= ([a,b], 1).
Assume that ([a,b], (W, ..., 1)) €Co if m<k. Assume also that we have either:

(1) Q) — 41,
(2) Q=Y = (a,b] and there exists ¢>0 such that 1l

vectorial measure (0, ...,0, 1, -\ 1)
Then C (R) is dense in W"’p([a,b],,u).

| isa right completion of the

la,a+e]

Remark. The same conclusion is true if we change (2) by (2'): Qm=1) — [a,b) and
there exists ¢>0 such that u|,_,, is a left completion of the vectorial measure

(0, ooy 0, Ly «on s Hi)-



202 J.M. Rodriguez | Journal of Approximation Theory 120 (2003) 185-216

Proof. Consider case (1). If m =k, then Q¥ = [a b] gives wyieB,(a,b]) and
Theorem C gives the result. Assume now O<m<k. Given a function
feVkr(la,b], ), we can choose a sequence {g,}=C>(R) converging to f in
Wwk=mr([a,b], ). Define

_pym—1 x X — m—1
Ju(x) =f(b) + - +f<””>(b)%+/b gn(t)%dt-

It is clear that

j _ m— X — b)m_j_l
fn(1)<x) _fO)(b)+ +f( l)(b)m
X ¥ — m—j—1
+ /h gn(t)ﬁdt (3.2)

for 0<j<m — 1. Since ([a,bd], (i, -.-, 1)) € €o, Corollary B gives
17 = £ 1 iy S NS = £ o apg -
It is immediate by (3.2) that
[FAZ _fn(i)HU([a,b],uj) <l = £ ey < llS = £ wcmoap

for 0<j<m —1, since y; is finite, and we conclude that f, converges to f in
wWer((a,b], ).

Consider now case (2). Given a function feV*?([a,b],u), let us consider a
sequence {g,} <= C* (R) converging to £ in W= ([a,b], ). Define the functions
hy by

Am—1
hn(x) I:f(aJrg) 4o +f(n771)(a+g)u

(m—1)!
X ( —l)m_l
+ ‘/a+8 gn(2) )(Cm_ ] dt
We have
m—j—1
W (x)=fDa+e)+ -+, V(a+e) (x(;a_;i) i

X (X _ Z)mfjfl
At

for 0<j<m — 1.
If m<k, since ([a,b], (L, ---, 1)) €%Bo, Corollary B gives

17 = BN i oty S NS = B s -
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This inequality is also true for m = k, since then wy € B,((a, b]). It is immediate that
||f(] h(] HU ([a+e,b),u < C||f n ||L1 ([a+e,b])
= (‘||f m) h£zm ||Wk*’”~ﬂ([a,b],y)7

for 0<j<m — 1. This gives

1S = Pl asspy g S NS = B Wi g (3-3)
Proposition A gives that there are a positive constant ¢ and 0 <k, <k such that
k()*l .
c||g||W"F ([a,a+e],u <||gHW/<F ([a,a+¢],(0,...,0,1, .-, )+Z |g(])(a+8)|
j=0

for all geV*?([a,b],n), where a+e is left (ko — 1)-regular. If ko>m, since
([a,b], (s -5 1)) €60, Theorem A gives

ko—1 )

Z 9" (a + ¢)| <C||g(m>|‘Wk*”’vl’([a,b],‘u)

Jj=m
for all ge V**([a,b], n). Consequently, we have for 0<ko <k,

m—1

cllgllweogaas . <" wimo a0 +Z gV (a + &)
J=

for all ge V2 ([a,b], u). Since (f — hy)¥ (a+ &) = 0, for 0<j<m — 1, we have
1S = Pl l o aas g < NS = B o apgo-

This inequality and (3.3) imply that %, converges to f in W*?([a,b],n). O

Theorem 3.3. Let us consider 1<p<oo and pu= (u,..., 1) a finite p-admissible
vectorial measure with A = [a, b] and wy = dy; /dx € B,((a,b]). Assume that we have
either:

(1) a is right (k — 2)-regular if k=2,

(2) there exists >0 such that pl, ., is a right completion of (0, ..., 0, w1, ) if
k=2.
Then CZ* (R) is dense in W P ([a,b], p).

Remark. The same conclusion is true if we change (2) by (2'): there exists ¢ >0 such
that ,u|[b7£’b] is a left completion of the vectorial measure (0, ..., 0, p_;, ) if £=2.

Proof. If k = 1 the result is Theorem 3.1. Therefore we can assume k>2. Choose a
compact interval Ic<(a,b]=Q% Y then every function ue V*?(|a,b),u) verifies

u*=Y'e C(I) and then u belongs to V¥ ([a,b), i) with i = (i, ..., W2 fk—1, 1) and
dfix_1 = dw,_y + y,dx. We have that A" ([a, b], (fx-1, 1)) = {0} (see Remark 2 to
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Definition 11) and even ([a, b], (fix_1, 1)) € o, since QXN @y ={a, b} (see Remark
1 to Definition 11).

Theorem 3.1 gives that C*(R) is dense in W!”([a,b], 7). Consequently, the
measure i satisfies the hypotheses in Theorem 3.2 with m = k — 1, and we have that
CZ*(R) is dense in W*?([a,b], fi) and therefore in W*?([a,b],p). O

Theorem 3.4. Let us consider 1 <p < o0, a compact interval I and a finite p-admissible
vectorial measure L = (U, ..., ) with A = I. Assume that there exist ay € I, an integer
0<r<k and positive constants ¢, such that

(1) du(x)<clx — aol’dp;(x) in [ag — 6,a0 + o] N1 for r<j<k,
(2) wi =dw,/dxeB,(I\{ao}),
(3) if r>0, ag is (r — 1)-regular.

Then C* (R) is dense in W (I, p).

Remark. Condition (1) means that g, is absolutely continuous with respect to y; in
[ap — J,ay + 6] N1 and its Radon-Nikodym derivative dy;,  /dp; is less or equal than

¢|x — ap|’. Proposition 3.2 in [R2] shows that this condition is not as restrictive as it
seems, since many vectorial weights with analytic singularities can be modified in
order to satisfy (1).

Proof. Without loss of generality, we can assume that g is an interior point of 7,
since the argument is simpler if apedI. Let us take f e V*?(I, ). Consider now a

function pe C* (R) with ¢ = 1in [-1,1], ¢ =0 in R\ (—2,2), and 0<¢<1 in R.

For each neN, let us define ¢, (x) = @(n(x — ap)) and &, = (1 — ¢,)f"). We have
||f()) - hnHkar'-p(],H) = ||(pnf(r)||Wk*"-P(I,y) <C0||f(r)||W"*"-ﬁ([u()—Z/iz‘a(]JﬁZ/n]‘,u)7

since we are in the hypothesis of Lemma A, with 1=ay—2/n, t =4/n and

I =[ay —2/n,ap + 2/n]: observe that |1 —ag| = |1+t —ag| =2/n=1/2 and

||(P;(1j)”L7~(R) =”j||<PU)||Lx(R)

< 4kmax{|\q)| L*(R) | Lo (R)) ** ||(/’<k)||Lr(R)}t_j~
Corollary C gives that gy is neither right nor left r-regular; this fact implies
w,({ao}) = - = we({ap}) = 0. Hence, we deduce that ||/ fhn||Wk7r,p<,ﬂ#)—>0 as

n—oo. Define " = (o, ..., ty_1, 1), with dpj = duy + Ve
(2) gives that duj/dx = wi + x

w0 1 dx; hypothesis
Va1 €B,(I). Then Theorem C gives that each
function A, can be approximated by functions in C°(R) with respect to the norm
wh=re(I, u") (since I is compact and y is finite) and therefore in W*="?(I, u). This
finishes the proof if » = 0. Otherwise, hypothesis (2) and (3) give QY =7 and
consequently /=D e AC(I).

Without loss of generality, we can assume that there exists ¢>0 such that [ay —
&,do + ¢ is contained in the interior of I and w,>1in I'\\[ay — &, ay + ¢]. Otherwise,
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we can change u by p* with pf =y if j#r and dpf = du. + 1 juy—c.ap+e) 9X-
It is obvious that it is more complicated to approximate f in W*?(I, u*) than
in W*P(I ). Therefore, we have A ([a,b], (1, ..., 1)) = {0} (see Remark 2

to Definition 11) and even ([a,b], (1, ..., 1)) €%, since (a,b)"\
((a,b),, v ---U(a,b),) has at most three points (see Remark 1 to Definition 11).

Let us consider a sequence {g,}=C*(R) converging to f) in W 7"2(I p).
Corollary B gives

||f(r) - anL‘(I) <C|\f<r) - qn”W"*"-”(l,u)'
For any fixed ael, the smooth functions defined by

(x — a)"_1

0u(x) = () 4/ (@)(x = a) 4 -4/ )

X X — r—1
R =

satisfy
||f(/> - Qr({)HUJ(I‘u/) <C||f(r) - anLl(I)
for 0<j<r, and consequently
/- Qn||wk-p(17u) S ch(") - Qn||u(1) + Hf<r> - Qn||wkfr~p(1ﬁu)
< ellf = qullrrogr -

We conclude that Q, converges to f in W*?(I,u). O

4. The case of non-compact support

Although the main interest in this section is the case of non-compact support, the
following result can be applied to the case of compact support.

Theorem 4.1. Let us consider 1<p<oo and pu= (uo,-...,1) a p-admissible
vectorial measure. Assume that there exist aeA and a positive constant ¢ such
that

cllgllwesa <lg(@] + g @1+ - + 19" @) + 119N 4, (4.1)

for every ge VK?(A, u). Then, P is dense in W*P(A, ) if and only if P is dense in
LP(A,:“I()‘

Proof. We prove the non-trivial implication. Let us consider a fixed function
feVk?(A n). Assume that P is dense in L7(4,p;), and choose a sequence {g,} of
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polynomials which converges to f*) in L7(4, ;). Then the polynomials

(X . a)k71

0lx) = (@) +/la)(x —a) + -+ 4 a) S
x r— k!
+ /a Qn(t)%dt
satisfy

C||f - Ql’l||W’<~1’(A,;1)<||f(k) - Ql(zk)HU’(A,,uk) = Hf(k> - ql’l“U(A,yk)a

since (f — 0,)"(a) =0 for 0<j<k, and we conclude that the sequence of
polynomials {Q,} converges to f in Wk? (A, ). O

We show now that Theorem 4.1 is very useful finding a wide class of measures
satisfying (4.1). The following inequality can be found in [Mu2,M, p. 40].

Muckenhoupt inequality II. Let us consider 1 <p< oo and w,, u, measures in (0, o)
with wy == du, /dx. Then there exists a positive constant ¢ such that

’/Ox g(t) dt

for any measurable function g in (0, 00), if and only if

<clg]
L2((0,20).11)

L7((0,00),11)

Su%’ to([r, OO))HWI_I||L1/(F*1>([0,r])< 0.
r>

Remark. A similar result is true for the intervals (a, c0) and (—o0,a), with aeR.
Lemma 4.1. Assume that wo(x)<cox®e ™™ and wi(x)=cix*e ™, for x>A4,
woe L'([0,4]), wi€B,([0,4]), with 1<p<c0, eco,c1,A>0 and og,01eR. If
oo <o + (¢ — 1)p, then wy, wy satisfy Muckenhoupt inequality I1.
Proof. First of all observe that

(x%eP) = x*1eP (a + bex*).
This implies (x%e?*") <sign bx“+*~ e’ as x— oo, if b#0. Therefore

,
. e b
/)c“eb"‘a’)cxr“+1 P if b>0,

4

“
¥ _ ol .
/ XD e = e b if b<0
.
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as r— oo. Hence, if 1 <p< oo, we have as r— oo

r r
/ 11/1(x)71/(p71> dx = / Wi (x)*l/(Pf1> dx
0 4

< C/ /00 g [(0-1) gy ol /(p=1) i /(1)
A

If p =1, we have for big r
W7 e o) S
Consequently, we have for 1 <p< o0
||Wf1 ||L1/(17*‘)([0A,r]) < C},.fotﬁr(lfs)(l’*l)e/lrx

as r— oo. Furthermore,
o0 o0
e e £
/ wo(x) dxéco/ XM dx = ot e
r r

The expression
to([r, OO))||W171||LI/(17*1)([0,V])
is bounded for r in a compact set; it is bounded for big r, if

. — )t — _ 1€
lim r0(0+1 tom o+ (1—¢)(p l)(i‘MI<OO.

r— o0

This condition holds since og <oy + (¢ — 1)p. O

Lemma 4.2. Assume that wo(x)<koxPo and wi(x)>=kxP

, for 0<x<b, with

I<p<oo, ko, ki>0, feR and fy> —1. If By=p, —p, then wo,wi satisfy

Muckenhoupt inequality I, with a = 0.

Proof. If l<p< oo and f;>p — 1, we have

b b
/ wl(x)*l/(pfl)dxgc/ P01 g 1B (0-1)
p

.
If p=1and §,>0, we have
W5 ey <
Consequently, we have for 1<p< oo and f5;>p — 1
lwy! [ <cr Pt

Furthermore, since 8, + 1>0, we obtain

r r
/ wo(x) dxgko/ xPo dx = rbot1,
0 0

If , >p — 1, the expression
F(r) = /10((0,”])HWTI||L1/<p—l>([r,b]),
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is bounded for re e, b] (with £>0); it is bounded for re (0, ¢), if

lim PPttt < o
r—0+

This condition holds since f,=f; — p. If f; <p — 1, we obtain similarly that F(r) is
bounded since f; + 1>0 and

!
F(r)<erfo™! (log ;)
for small r.
The following result is well known for p = 2 (see e.g. [F, Chapter II]). It is also

known for p#2 but I have found no reference for it. I include a proof for the sake of
completeness. [

Lemma 4.3. Consider a scalar finite measure u in R. Assume that we have either:
(1) there exists t>0 such that e'™ e L' (u),
(2) supp u<|0, o) and there exists t>0 such that eV e L' (1).

Then, the polynomials are dense in LP(u) for 1 <p< co.

Proof. Denote by P?(u) the closure of P in L7 (u). Consider hypothesis (1). We show
first that if geL/(u) with 1<g<oco and [x"g(x)du(x) =0 for every neN, then
g = 0 u-almost everywhere. For such g, consider the Fourier transform F of g du

Fz) = / ¢ g(x) dp().
Observe that we have
l€™g(x)| <|g(x) [ < g (x) |11,

if |[Im z|<t(q — 1)/q. Holder inequality gives

/ 1) e dp(x) < lgl oo e D71 Lo

-1
< gz le™ 15,
and this implies that F is a holomorphic function in {zeC : |Imz|<t(q — 1)/q}. We
also have for each neN

Fi(z) = / ¢ (ix)'g(x) d(x),  F(0) = " / g (x) du(x) = 0.

Therefore F (the Fourier transform of g du) is identically 0, and consequently g = 0
u-almost everywhere.

If f e L7 (1) \P?(u), then there exists Ge (L7 (u)) such that G(P) = 0 and G(f) #0.
Since u is o-finite, there exist ge LY(u) with ¢ .= p/(p — 1)>1and G(h) = [ hg du for
every he LP(u). In particular, we have G(x") = [ x"g du = 0 for every neN. This fact
implies g = 0. Consequently G(f) = 0 and we deduce P?(u) = L”(u), for 1 <p< 0.
This finishes the proof if we assume hypothesis (1).
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Consider now hypothesis (2). There exists a unique measure p* in R symmetric
with respect to 0 and verifying [f(x)du(x) = [f(x ) for every feL'(w).
Since p* satisfies (1), given any function f eLI’ (), there ex1sts a sequence {/,} =P
with lim,,_, o, [|f(x?) — hy(x)["dp*(x) = 0. Consequently, we have that there exists a
sequence {H,} < P such that

(fre- Wuﬂw
( /‘ +2h (=) d'u*(x)>l/p
~([ 16 - s )W ([ 1760 - traucs ))W,

and this finishes the proof. [

These lemmas give the following results.
Proposition 4.1. Consider 1 <p< oo and a vectorial weight w in (0, c0), with

(1) wi(x) <, for 0<j<k, we(x) = cxxPe, in (0,a),
(2) wi(x) St ENE=Pe= | for 0<j <k, wi(x)=cxx*e™, in (a, w0),

where weR, a,¢,4,¢;>0 and B;> — 1, for 0<j<k. Then the polynomials are dense in
Wr ([0, o), w) if they are dense in L7 ((0, c0), wi) and ;= Py — (k — j)p, for 0<j <k.

Proof. An induction argument with Lemma 4.1 in (a, o) instead of (0, o), gives for
0<j<k and fe Vk?([a, 0),w),

/w
a

<C/ |0 (x)Pwe(x) dx,

f(f)(x) _f(i)(a) — .. _f(kfl)(a)i

and therefore
. k—1 ‘
C||f(]) ‘ |U’((a,w),wj) < ‘ |f(k)||l/’((a.g3)7wk) + Z |f(l) (a)
=
for 0<j<k and fe V¥([a, o), w). Consequently, we have

k-1
C||f||W"'-l’([a,oo),w) < ||f(k>HL/’((a,w),wk) + Z |f(]) (Cl)| (42)
Jj=0
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for all feV*?([a, o), w). If we use now Lemma 4.2 in (0,a), a similar argument
gives

k1
el A Nlwrr o <IN poam + 2 1/ (@) (4.3)
=0

for all f € V*7([0,a], w). Theorem 4.1, (4.2) and (4.3) give the proposition. [J

We have the following immediate consequence of Proposition 4.1 and
Lemma 4.3.

Corollary 4.1. Consider 1<p< oo and a vectorial weight w, with w;(x)=x%e"* in
(0,0), for 0<j<k, where ¢=1/2, >0 and o;> —1, for 0<j<k. Then the
polynomials are dense in W*?([0, c0),w) if o — (k — j)p<oy <oy + (k —j)(e — 1)p,
for 0<j<k.

Proposition 4.2. Consider 1<p< co and a vectorial weight w in R, with

(D) w;(x) < ¢jfoeTEEDP gl ﬁ)r 0<j <k, we(x)=cx|x|"e X in (B, 0),
(2) wi(x )<cj|x|“+k =)0 =l  for 0<j <k, wie(x) = cx|x|* e* M ,in (—o0,—A),
() wi(x)eL'([~4, B]), for 0<j<k, wi(x) € B,([-4, B)),

where a0/ €R, ¢,&' > 1 and A, B, 2,1, ¢;>0, for 0<j<k. Then the polynomials are
dense in W? (R, w) if they are dense in LP (R, wy).

Remark. The same result is true for £>1/2 if we change R by (0, ).

Proof. The argument is similar to the one in Proposition 4.1, with 0 instead of a. In
this case, we only use Lemma 4.1. [

We obtain the following consequence of Proposition 4.2 and Lemma 4.3.

Corollary 4.2. Consider 1<p<oo and a vectorial weight w in R, with
wi(x)=|x|"e " in R, for 0<j<k, where =1, 1>0 and ;> — 1, for 0<j<k.
Assume also that o, <p — 1 if p>1, and o3 <0 if p = 1. Then the polynomials are dense
in Wkr(R,w) if oy <oy + (k —j)(e — 1)p, for 0<j<k.

We can obtain similar results for weights of fast decreasing degree. The following
results are not sharp since the sharp results are hard to write and do not involve any
new idea.

Define inductively the functions exp, _ , as follows:

exp, (1) = exp(41),  exp; (1) = exp(hiexpy, (1))
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Lemma 4.4. Consider 1 <p < oo and a scalar weight w(x) =<exp_,, ;, ., (x*) in (0, ),
where n>1 and ¢, 11, A2, ..., 2, >0. Then w, w satisfy Muckenhoupt inequality II.

Proof. A straightforward computation shows that the derivative of the function

d & —& & £
dx (epr,/lz,...,ln (x )xl H CXP i hist s i (x)) =<sign b exp, e A,,('x )

n (1, o). Hence we have that
- e
/ W’*exp—m A2, SH eXp— AisPislyeen A,,( )7
p

_ 1 1 3 —¢ 3
[ A0 = EXP ) ot 0 T T XD ()

n (1, 00) if 1<p< oo. This finishes the proof, since we L'((0, 0)). O

Proposition 4.3. Consider 1<p<oo and a vectorial weight w, with
wi(x)<ciexp_y, g, o, (IX[°) in R, for 0<j<k, wi(x)=ceexp_y 5, 5 (1x[°) in R,
where n>1 and ¢, A1, 22, ..., Ay, Co,C1, ...,k >0. Then the polynomials are dense in
WP (R, w) if they are dense in LP(R,wy).

Remark. The same result is true if we change R by (0, o).

Proof. It is enough to follow the argument in the proof of Proposition 4.1, using
Lemma 4.4 instead of Lemmas 4.1 and 4.2. [

The following result is an immediate consequence of Proposition 4.3 and Lemma 4.3.

Corollary  4.3. Consider 1<p<oo and a vectorial weight w, with
wi(x)=<exp_; 5,5 (Ix[) in R, for 0<j<k, where n>1 and ¢, 11,22, ..., 2,>0. Then
the polynomials are dense in W*? (R, w).
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5. Comparable norms in generalized Sobolev spaces

It is important to know when two Sobolev norms are comparable. Here we prove
a result on comparable Sobolev norms.

It is not difficult to see that if x and v are o-finite measures in a measurable space
X such that LP(X,u) = LP(X,v), then p and v are comparable measures and the
norms in I?(X, u) and L?(X,v) are also comparable (see Lemma 5.1).

This is not true for Sobolev spaces, as shows the following example: if u is a finite
vectorial measure in [a,b] verifying dy, = dx and #supp yu,=k, we have that
Wk ([a,b], u) = W5P([a, b]) (see [RARP1, Corollary 4.5]), and yy, ..., it;_; may not
be comparable to Lebesgue measure. However, we have also that the norms in these
two spaces are comparable by Corollary 4.5 in [RARP1] or Theorem 5.1.

The following result generalizes this situation.

Theorem 5.1. Let us consider 1 <p<oo and u= (uy, ..., ), v= (vo, ..., vx) o-finite
p-admissible vectorial measures, with absolutely continuous parts w, v, respectively.
Assume that we have W*P(A, ) = W*P(A,v) and the additional conditions:

(1 (1 + v)(QY) < oo for 0<j <k,

() QU = Qi1 - V& and it is a finite union of bounded intervals, for 0<j<k,

) wil o e LV0=D(4;) if A;#0, where A; is the open set A;:=Q\QV for
0<j<k and A = Q.

Then the norms in WP (A, u) and W*?(A,v) are comparable.

Remark. The sets €; can be distinct for w; and v; if 0<j<k, but the condition
WkP(A, 1) = W P(A,v) implies that QY and A; (if 0<j<k) are the same for w and
v.

In order to prove Theorem 5.1 we need the following lemma.

Lemma 5.1. Let us consider o-finite measures p, v in a measurable space X such that
LP(X,u) =LP(X,v) for some | <p<oo. Then u and v are comparable measures, the
norms in LP(X,u) and LP(X,v) are comparable and even LY(X,u) = LI(X,v) for
every 1 <g< 0.

Proof. It is immediate that the sets with zero measure are the same for both
measures. Therefore, 4 and v are mutually absolutely continuous and we can write
du=hdv.

Assume that / is not comparable to 1 in X. Without loss of generality, we can
assume that 4~ '((0, #]) has positive v-measure for every ¢>0. (The case 4! ([t, ©0))
has positive v-measure for every >0 is similar, changing the roles of u and v.) Let us
consider a decreasing sequence {#,} with limit 0 such that 0<#,<1/n and X, =
h='((t,11,1,)) has positive v-measure for every n, and an increasing sequence of
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measurable sets 4” such that X = u,A4" and 0<v(A4") < co for every n. Let us define
a sequence of measurable sets Y,, .= X, n A" where m, are chosen in order to verify
0<v(Y,)< oo for every n.

We define now the function

= 1
= > (m(Y.) yy,.
n=1

Since {Y,} are pairwise disjoint, we have that

0 0 1

19117, = D (v(Y)) w(¥o) =~ = o0
n=1 n=1

and

4
gl7

We have a contradiction since ge L” (X, u)\L?(X,v). Consequently u and v are
comparable measures, the norms in L”(X,u) and LP(X,v) are comparable and
Li(X,p) = LI1(X,v) for every 1<g<oo. O

Proof of Theorem 5.1. Observe that (1;),(4;) = (v;)s(4;) =0 for 0<j<k, since u
and v are p-admissible measures. We show first that p;>=v; in the set 4; for 0<j<k.
This is immediate if |4;| = 0; otherwise let us define /g = (du;/dv;)| ;. Assume that
ho is not comparable to 1 in A4;. Without loss of generality we can assume that
hy'((0,1]) has positive Lebesgue measure for every #>0. (The case hy!([t, 00)) has
positive Lebesgue measure for every #>0 is similar, changing the roles of x; and v;.)

Property (2) gives that 4; is a finite union of bounded intervals [} --- U IY.
Therefore, there exists 1<i<N such that Ii Nhy'((0,7]) has positive Lebesgue
measure for every >0. Choose a proper submterval Licl !'such that I;nhy'((0,7])
has positive Lebesgue measure for every >0, and define h = Ny I

Let us consider a decreasing sequence {#,} with limit 0 such that 0<z,<1/n and

X, = h~'((tus1,,)) has positive Lebesgue measure for every n, and an increasing
sequence of measurable sets A7 such that [; = u,A} and 0<v;(4}) < o for every n

(recall that the remark to Deﬁmtlon 2 gives that the Lebesgue measure is absolutely

continuous with respect to v; in 4;). Let us define a sequence of measurable sets

Y, =X, r\A}"” where m, are chosen in order to verify 0<v;(Y,) < oo for every n.
We define now the function

0

g= (my(Y)) gy,

n=1
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Since {Y,} are pairwise disjoint, we have that

0 ©

-1
19115y = D (i (Y)) " i(Ya) =D —= o0
n=1 n=1
and
. I
ol = D= (v ¥a))” / hv,
n=1 n
o0 0 1
< (I’IV](Yn)) tnvj(Yn)< ﬁ< 0.
n=1 n=1
Observe that ge L' (R):
1 —1 11l
ol = | )0 <ol 0 1 <
J

since we have (3) and ge L”(u;).

Recall that I; is a proper subinterval of Ij? . Then we have either sup I; <sup Ij? or
inf Ij? <inf J;. Assume that o = sup [; < == sup Ij? (the other case is symmetric). Let
us consider a function pe C*(R) with 0<¢<1, p =1 in (—o0,a] and ¢ =0 in
[, c0). If we take xo == inf I}, then the function

X AV
6 = ot | g@%m

belongs to C/~'(R) and we have supp GS I, and G = G’ = --- = GY) = 0 in R\ 4;.
Property (1) gives
wi(A) < () <p(QV) < o0 for 0<i<j<k,

This fact and ge L7 () give Ge Wk?(A, u). Since we have g¢ L?(v;), we obtain that
G¢ WkP(A,v), which is a contradiction with W (A, i) = W¥*P(A,v). Therefore, we
have proved that w; =v; in 4;.

Let us consider a function f e V57 (A, u) = V*7(4,v). We deduce by property (2)

that Q<0>\(Q1 U UQe) = 0(Q1U - Q) has only a finite number of points and
then (4, 1) €% (see Remark 1 to Definition 11). Therefore, we can apply part (b) of
Theorem A and we have a representative f; in the same class than f in W*?(A, u) =
WkP(A,v) such that

k=1
S A iy <l weoag:
=0
since we have property (2). Then we have by property (1)
k=1

k—1 k-1
Z Hf@”u(gmj) = zo: ||fo(])HU(QU>,v,) <Cz(; Hf()(/)HL‘T«(Q@)<C|‘f|‘ka/’(A,y)'
J= J=

J=0
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We have also
k

k
D Moy <€D M Moy <l Mo a -
=

=
Lemma 5.1 gives
||f||[/’(A\Q(O)7yvO)gc”f”L!’(A\Q(O)‘HO)<C||f||Wk-p(A“u)'

These inequalities give that there exists a positive constant, independent of f such
that

S Moy <l T wio a g

since we have
V(RN (QuV) =0 for 0<j<k,
vo(R\4) =0, v(R\4g)=0.

The reverse inequality is obtained by changing the roles of u and v. [
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