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Abstract

The density of polynomials is straightforward to prove in Sobolev spaces W k;pðða; bÞÞ; but
there exist only partial results in weighted Sobolev spaces; here we improve some of these

theorems. The situation is more complicated in infinite intervals, even for weighted Lp spaces;

besides, in the present paper we have proved some other results for weighted Sobolev spaces in

infinite intervals.
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1. Introduction

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics
(see e.g. [HKM,K,Ku,KO,KS,T]). In [EL,ELW1,ELW2] the authors study some
examples of Sobolev spaces with respect to general measures instead of weights, in
relation with ordinary differential equations and Sobolev orthogonal polynomials.
The papers [R1,R2,RARP1,RARP2] are the beginning of a theory of Sobolev spaces
with respect to general measures. We are interested in the relationship between this
topic and Approximation Theory in general, and Sobolev orthogonal polynomials in
particular.
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Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a vectorial Borel measure in R with

D :¼ ,k
j¼0supp mj: The Sobolev norm of a function f of class CkðRÞ in W k;pðD; mÞ is

defined by

jj f jjp
W k;pðD;mÞ :¼

Xk

j¼0

Z
j f ðjÞjp dmj:

We talk about Sobolev norm although it can be a seminorm; in this case we will take
equivalence classes, as usual.

If every polynomial belongs to Lpðm0Þ-Lpðm1Þ-?-LpðmkÞ; we denote by

Pk;pðD; mÞ the completion of polynomials P with the norm of W k;pðD; mÞ: By a
theorem in [LP] we know that, if D is a compact set, the zeroes of the Sobolev

orthogonal polynomials with respect to the scalar product in W k;2ðD; mÞ are
contained in the disk fz : jzjp2jjMjjg; where the multiplication operator ðMf ÞðxÞ ¼
x f ðxÞ is considered in the space Pk;2ðD; mÞ: Consequently, the set of the zeroes of the
Sobolev orthogonal polynomials is bounded if the multiplication operator is
bounded. The location of these zeroes allows to prove results on the asymptotic
behaviour of Sobolev orthogonal polynomials (see [LP]).

In [R2,RARP2] there are necessary conditions and sufficient conditions for M to
be bounded. A fundamental tool in this work is to know what are the elements in

Pk;2ðD; mÞ: In fact, this is a central problem in Approximation Theory: find the class
of functions which can be approximated by polynomials or smooth functions with a
given norm. If D is a compact set, it is equivalent to approximate by polynomials or
CNðRÞ functions, since the Bernstein’s proof of Weierstrass’ Theorem (see e.g. [D, p.

113]) gives that every function in Ckð½a; b�Þ can be approximated by polynomials
uniformly up to the kth derivative. However, if D is non-compact it is more difficult
to approximate functions by polynomials than by functions in CNðRÞ:

In [RARP2, Theorem 4.1], there are sufficient conditions in order to have

Pk;pðD; mÞ ¼ W k;pðD; mÞ; if we define in a correct way these Sobolev spaces. In this
paper, we obtain improvements of Theorem 4.1 in [RARP2] in the case of D
compact and new results for the non-compact case. Observe that Theorem 4.3 in
[RARP2] (see Theorem E) gives a criterion to obtain the density of smooth
functions in the non-compact case, but it cannot be applied to have the density of
polynomials.

Now, let us state the main results here. We refer to the definitions in the next
section. In the paper, the results are numbered according to the section where they
are proved.

First, we have four theorems which give sufficient conditions for CN

c ðRÞ to be

dense in W k;pðD; mÞ; if D is a compact interval. Observe that under this hypothesis on
D; CN

c ðRÞ is dense if and only if CNðRÞ or P is dense.

Theorem 3.1. Let us consider 1ppoN and m ¼ ðm0; m1Þ a finite p-admissible vectorial

measure with D ¼ ½a; b� and w1 :¼ dm1=dxABpðða; bÞÞ: Then CN

c ðRÞ is dense in

W 1;pð½a; b�; mÞ:
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Theorem 3.2. Let us consider 1ppoN; 0ompk and m ¼ ðm0;y; mkÞ a finite

p-admissible vectorial measure with D ¼ ½a; b� and CN

c ðRÞ dense in W k	m;pð½a; b�; mÞ:
Assume that ð½a; b�; ðmm;y; mkÞÞAC0 if mok: Assume also that we have

either:

(1) Oðm	1Þ ¼ ½a; b�;
(2) Oðm	1Þ ¼ ða; b� and there exists e40 such that mj½a;aþe� is a right completion of the

vectorial measure ð0;y; 0; mm;y; mkÞ:

Then CN

c ðRÞ is dense in W k;pð½a; b�; mÞ:

Theorem 3.3. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a finite p-admissible

vectorial measure with D ¼ ½a; b� and wk :¼ dmk=dxABpðða; b�Þ: Assume that we have

either:

(1) a is right ðk 	 2Þ-regular if kX2;
(2) there exists e40 such that mj½a;aþe� is a right completion of ð0;y; 0; mk	1; mkÞ if

kX2:

Then CN

c ðRÞ is dense in W k;pð½a; b�; mÞ:

Theorem 3.4. Let us consider 1ppoN; a compact interval I and a finite p-admissible

vectorial measure m ¼ ðm0;y; mkÞ with D ¼ I : Assume that there exist a0AI ; an integer

0prok and positive constants c; d such that

(1) dmjþ1ðxÞpc jx 	 a0jp dmjðxÞ in ½a0 	 d; a0 þ d�-I for rpjok;

(2) wk :¼ dmk=dxABpðIWfa0gÞ;
(3) if r40; a0 is ðr 	 1Þ-regular.

Then CN

c ðRÞ is dense in W k;pðI ; mÞ:

The following result gives a sufficient condition for P to be dense in W k;pðD; mÞ;
without hypothesis on the support D:

Theorem 4.1. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a p-admissible

vectorial measure. Assume that there exist aAD and a positive constant c such

that

cjjgjjW k;pðD;mÞpjgðaÞj þ jg0ðaÞj þ?þ jgðk	1ÞðaÞj þ jjgðkÞjjLpðD;mkÞ

for every gAVk;pðD; mÞ: Then, P is dense in W k;pðD; mÞ if and only if P is dense in

LpðD; mkÞ:

As an application of this theorem we can obtain many results for particular
weights. We make the computations for the following cases: Laguerre, Freud and
weights of fast decreasing degree.

J.M. Rodrı́guez / Journal of Approximation Theory 120 (2003) 185–216 187



Proposition 4.1. Consider 1ppoN and a vectorial weight w in ð0;NÞ; with

(1) wjðxÞpcjx
bj ; for 0pjok; wkðxÞXckxbk ; in ð0; aÞ;

(2) wjðxÞpcjx
aþðk	jÞðe	1Þpe	lxe

; for 0pjok; wkðxÞXckxae	lxe
; in ða;NÞ;

where aAR; a; e; l; cj40 and bj4	 1; for 0pjpk: Then the polynomials

are dense in W k;pð½0;NÞ;wÞ if they are dense in Lpðð0;NÞ;wkÞ and bjXbk 	
ðk 	 jÞp; for 0pjok:

Corollary 4.1. Consider 1ppoN and a vectorial weight w; with wjðxÞ^xaj e	lxe
in

ð0;NÞ; for 0pjpk; where eX1
2
; l40 and aj4	 1; for 0pjpk: Then the polynomials

are dense in W k;pð½0;NÞ;wÞ if ak 	 ðk 	 jÞppajpak þ ðk 	 jÞðe	 1Þp; for 0pjok:

Proposition 4.2. Consider 1ppoN and a vectorial weight w in R; with

(1) wjðxÞpcjjxjaþðk	jÞðe	1Þp
e	ljxje ; for 0pjok; wkðxÞXckjxjae	ljxje ; in ðB;NÞ;

(2) wjðxÞpcjjxja
0þðk	jÞðe0	1Þp

e	l0 jxje
0
; for 0pjok; wkðxÞXckjxja

0
e	l0 jxje

0
; in ð	N;	AÞ;

(3) wjðxÞAL1ð½	A;B�Þ; for 0pjpk; wkðxÞABpð½	A;B�Þ;
where a; a0AR; e; e0X1 and A;B; l; l0; cj40; for 0pjpk: Then the polynomials are

dense in W k;pðR;wÞ if they are dense in LpðR;wkÞ:

Corollary 4.2. Consider 1ppoN and a vectorial weight w in R; with

wjðxÞ^jxjaj e	ljxje in R; for 0pjpk; where eX1; l40 and aj4	 1; for 0pjpk:

Assume also that akop 	 1 if p41; and akp0 if p ¼ 1: Then the polynomials are dense

in W k;pðR;wÞ if ajpak þ ðk 	 jÞðe	 1Þp; for 0pjok:

Proposition 4.3. Consider 1ppoN and a vectorial weight w; with

wjðxÞpcj exp	l1;l2;y;ln
ðjxjeÞ in R; for 0pjok; wkðxÞXck exp	l1;l2;y;ln

ðjxjeÞ in R;

where n41 and e; l1; l2;y; ln; c0; c1;y; ck40: Then the polynomials are dense in

W k;pðR;wÞ if they are dense in LpðR;wkÞ:

Corollary 4.3. Consider 1ppoN and a vectorial weight w; with

wjðxÞ^exp	l1;l2;y;ln
ðjxjeÞ in R; for 0pjpk; where n41 and e; l1; l2;y; ln40: Then

the polynomials are dense in W k;pðR;wÞ:

We also obtain results which allow to decide in many cases when two norms are
comparable. Now we present the notation we use.

Notation: In the paper kX1 denotes a fixed natural number; obviously

W 0;pðD; mÞ ¼ LpðD; mÞ: All the measures we consider are Borel and positive on R;
if a measure is defined in a proper subset ECR; we define it in RWE as the zero
measure. Also, all the weights are non-negative Borel measurable functions defined
on R: If the measure does not appear explicitly, we mean that we are using Lebesgue
measure. We always work with measures which satisfy the decomposition dmj ¼
dðmjÞs þ dðmjÞac ¼ dðmjÞs þ h dx; where ðmjÞs is singular with respect to Lebesgue
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measure, ðmjÞac is absolutely continuous with respect to Lebesgue measure and h is a

Lebesgue measurable function (which can be infinite in a set of positive Lebesgue
measure); obviously every s-finite measure belongs to this class. Given 0omok; a

vectorial measure m and a closed set E; we denote by W k;pðE; mÞ the space

W k;pðD-E; mjEÞ and by W k	m;pðD; mÞ the space W k	m;pðD; ðmm;y; mkÞÞ: We denote

by supp n the support of the measure n: If A is a Borel set, jAj; wA; %A and #A denote,
respectively, the Lebesgue measure, the characteristic function, the closure and the

cardinality of A: By f ðjÞ we mean the jth distributional derivative of f : P denotes the
set of polynomials. We say that an n-dimensional vector satisfies an one-dimensional
property if each coordinate satisfies this property. Finally, the constants in the
formulae can vary from line to line and even in the same line.

The outline of the paper is as follows. Section 2 presents most of the definitions we
need to state our results; we also collect the technical results of [R2,RARP1,RARP2]
that we need. Section 3 is dedicated to the proof of the theorems on density for
measures with compact support. In Section 4 we prove the theorems on density
without hypothesis on the support. We prove some results on comparable norms in
Sobolev spaces in Section 5.

2. Definitions and previous results

Obviously, one of our main problems is to define correctly the space W k;pðD; mÞ:
There are two natural definitions:

(1) W k;pðD; mÞ is the biggest space of (classes of) functions f which are regular
enough to have jj f jjW k;pðD;mÞoN:

(2) W k;pðD; mÞ is the closure of a good set of functions (e.g. CNðRÞ or P) with the
norm jj � jjW k;pðD;mÞ:

However, both approaches have serious difficulties:

We consider first approach (1). It is clear that the derivatives f ðjÞ must be
distributional derivatives in order to have a complete Sobolev space. Therefore, we
need to restrict the measures m to a class of p-admissible measures (see Definition 8).
Roughly speaking m is p-admissible if ðmjÞs; for 0ojpk; is concentrated in the set of

points where f ðjÞ is continuous, for every function f of the space, because otherwise

f ðjÞ is determined, up to zero-Lebesgue measure sets. This will force ðmkÞs to be

identically zero. However, there will be no restriction on the support of ðm0Þs:
This reasonable approach excludes norms appearing in the theory of Sobolev

orthogonal polynomials. Even if we work with the simpler case of the weighted

Sobolev spaces W k;pðD;wÞ (measures without singular part) we must impose that wj

belongs to the class Bp (see Definition 2) in order to have a complete weighted

Sobolev space (see [KO,RARP1]).
Approach (2) is simpler: a classical theorem says that the completion of every

normed space exists (e.g. ðCNðRÞ; jj � jjW k;pðD;mÞÞ or ðP; jj � jjW k;pðD;mÞÞ). However, we
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have two difficulties. The first one is evident: we do not have an explicit description
of the Sobolev functions as in (1) (in [RARP2, Section 4] there are several theorems
which give that both definitions of Sobolev space are the same for p-admissible
measures). The second problem is worse: the completion of a normed space is by
definition a set of equivalence classes of Cauchy sequences. In many cases this
completion is not a function space (see [R2, Theorem 3.1] and its Remark). Here, we
work with the first approach; see [R2] in order to deal with the second one.

First of all, we explain the definition of generalized Sobolev space in [RARP1]. We
start with some preliminary definitions.

Definition 1. We say that two functions u; v are comparable on the set A if there are
positive constants c1; c2 such that c1vðxÞpuðxÞpc2vðxÞ for almost every xAA: Since
measures and norms are functions on measurable sets and vectors, respectively, we
can talk about comparable measures and comparable norms. We say that two
vectorial weights or vectorial measures are comparable if each component is
comparable.

In what follows, the symbol a^b means that a and b are comparable for a and b

functions, measures or norms.
Obviously, the spaces LpðA; mÞ and LpðA; nÞ are the same and have comparable

norms if m and n are comparable on A: Therefore, in order to study Sobolev spaces
we can change a measure m to any comparable measure n:

Next, we shall define a class of weights which plays an important role in our
results.

Definition 2. We say that a weight w belongs to Bpð½a; b�Þ; with 1ppoN; if

w	1AL1=ðp	1Þð½a; b�Þ:

Also, if J is any interval we say that wABpðJÞ if wABpðIÞ for every compact interval

IDJ: We say that a weight belongs to BpðJÞ; where J is a union of disjoint intervals

,iAAJi; if it belongs to BpðJiÞ; for iAA:

Remark. If dm :¼ w dx in some interval J; with wABpðJÞ; then the Lebesgue measure

in J is absolutely continuous with respect to m:
Observe that if vXw in J and wABpðJÞ; then vABpðJÞ:
The class BpðRÞ contains the classical ApðRÞ weights appearing in Harmonic

Analysis (see [Mu1] or [GR]). The classes BpðOÞ; with ODRn; and ApðRnÞ (1opoN)

have been used in other definitions of weighted Sobolev spaces in [K,KO],
respectively.

Definition 3. We denote by ACð½a; b�Þ the set of functions absolutely continuous in

½a; b�; i.e. the functions fACð½a; b�Þ such that f ðxÞ 	 f ðaÞ ¼
R x

a
f 0ðtÞ dt for all xA½a; b�:

If J is any interval, AClocðJÞ denotes the set of functions absolutely continuous in
every compact subinterval of J:
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Definition 4. Let us consider 1ppoN and a vectorial measure m ¼ ðm0;y;mkÞ
with absolutely continuous part w ¼ ðw0;y;wkÞ: For 0pjpk we define the
open set

Oj :¼ fxAR : ( an open neighbourhood V of x with wjABpðVÞg:

Observe that we always have wjABpðOjÞ for any 1ppoN and 0pjpk: In fact, Oj

is the greatest open set U with wjABpðUÞ: Obviously, Oj depends on p and m;
although p and m does not appear explicitly in the symbol Oj: Applying Hölder

inequality it is easy to check that if f ðjÞALpðOj ;wjÞ with 1pjpk; then f ðjÞAL1
locðOjÞ

and f ðj	1ÞAAClocðOjÞ:

Hypothesis. From now on we assume that wj is identically 0 on the complement

of Oj:

We need this hypothesis in order to have complete Sobolev spaces (see
[KO,RARP1]).

Remark. This hypothesis is satisfied, for example, if we can modify wj in a set of zero

Lebesgue measure in such a way that there exists a sequence anr0 with w	1
j fðan;N�g

open for every n: If wj is lower semicontinuous, then this condition is satisfied.

The following definitions also depend on m and p; although m and p do not appear
explicitly.

Let us consider 1ppoN; m ¼ ðm0;y; mkÞ a vectorial measure and yAD: To
obtain a greater regularity of the functions in a Sobolev space we construct a
modification of the measure m in a neighbourhood of y; using the following
Muckenhoupt weighted version of Hardy inequality (see [Mu2,M, p. 44]). This
modified measure is equivalent in some sense to the original one (see Theorem A).

Muckenhoupt inequality I. Let us consider 1ppoN and m0; m1 measures in ða; b� with

w1 :¼ dm1=dx: Then there exists a positive constant c such thatZ b

x

gðtÞ dt

����
����

����
����
Lpðða;b�;m0Þ

pcjjgjjLpðða;b�;m1Þ

for any measurable function g in ða; b�; if and only if

sup
aorob

m0ðða; r�Þjjw	1
1 jjL1=ðp	1Þð½r;b�ÞoN:

Definition 5. A vectorial measure %m ¼ ð %m0;y; %mkÞ is a right completion of a vectorial
measure m ¼ ðm0;y; mkÞ with respect to y; if %mk :¼ mk and there is an e40 such that

%mj :¼ mj in the complement of ðy; y þ e� and

%mj :¼ mj þ *mj in ðy; y þ e� for 0pjok;
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where *mj is any measure satisfying:

(i) *mjððy; y þ e�ÞoN;

(ii) Lpð *mj; %mjþ1ÞoN; with

Lpðn; sÞ :¼ sup
yoroyþe

nððy; r�Þ ds
dx

� �	1
�����

�����
�����

�����
L1=ðp	1Þð½r;yþe�Þ

:

The Muckenhoupt inequality guarantees that if f ðjÞALpðmjÞ and f ðjþ1ÞALpðmjþ1Þ;
then f ðjÞALpð %mjÞ: If we work with absolutely continuous measures, we also say that a

vectorial weight %w is a completion of m (or of w).

Example. It can be shown that the following construction is always a completion: we
choose w̃j :¼ 0 if %wjþ1eBpððy; y þ e�Þ; if %wjþ1ABpð½y; y þ e�Þ we set w̃jðxÞ :¼ 1 in

½y; y þ e�; and if %wjþ1ABpððy; y þ e�ÞWBpð½y; y þ e�Þ we take w̃jðxÞ :¼ 1 for xA½y þ
e=2; y þ e�; and

w̃jðxÞ :¼

d

dx

R yþe
x %w

	1=ðp	1Þ
jþ1

� �	pþ1
	 


¼ ðp 	 1Þ %wjþ1ðxÞ	1=ðp	1Þ

ð
R yþe

x %w
	1=ðp	1Þ
jþ1 Þp

if 1opoN;

jj %w	1
jþ1jj

	1
LNð½x;yþe�Þ þ

d

dx
ðjj %w	1

jþ1jj
	1
LNð½x;yþe�ÞÞ if p ¼ 1

8>>>>>><
>>>>>>:

for xAðy; y þ e=2Þ:

Remark. (1) We can define a left completion of m with respect to y in a similar way.
(2) If %wjþ1ABpð½y; y þ e�Þ; then Lpð *mj; %wjþ1ÞoN for any measure *mj with *mjððy; y þ

e�ÞoN: In particular, Lpð1; %wjþ1ÞoN:

(3) If m; n are two vectorial measures such that mjXcnj for 0pjpk and %n is a right

completion of n; then there is a right completion %m of m; with %mjXc%nj for 0pjpk (it is

enough to take *mj ¼ *nj). Also, if m; n are comparable measures, %n is a right completion

of n if and only if it is comparable to a right completion %m of m:
(4) We always have %mk ¼ mk and %mjXmj for 0pjok:

Definition 6. For 1ppoN and a vectorial measure m; we say that a point yAR is
right j-regular (respectively, left j-regular), if there exist e40; a right completion %m
(respectively, left completion) of m and joipk such that %wi :¼ d %mi=dxABpð½y; y þ e�Þ
(respectively, Bpð½y 	 e; y�ÞÞ: Also, we say that a point yAR is j-regular, if it is right

and left j-regular.

Remark. (1) A point yAR is right j-regular (respectively, left j-regular), if at least one
of the following properties is verified:

(a) There exist e40 and joipk such that wiABpð½y; y þ e�Þ (respectively, Bpð½y 	
e; y�ÞÞ: Here we have chosen *mj ¼ 0:

J.M. Rodrı́guez / Journal of Approximation Theory 120 (2003) 185–216192



(b) There exist e40; joipk; a40; and doði 	 jÞp 	 1; such that

wiðxÞXajx 	 yjd for almost every xA½y; y þ e�

(respectively, ½y 	 e; y�Þ: See [RARP1, Lemma 3.4].
(2) If y is right j-regular (respectively, left), then it is also right i-regular

(respectively, left) for each 0pipj:
(3) We can take i ¼ j þ 1 in this definition since by the second remark after

Definition 5 we can choose %wl ¼ wl þ 1ABpð½y; y þ e�Þ for joloi; if j þ 1oi:

(4) If m; n are two vectorial measures with the same absolutely continuous part,
then y is right j-regular (respectively, left) with respect to m if and only if it is right j-
regular (respectively, left) with respect to n:

When we use this definition, we think of a point fbg as the union of two half-

points fbþg and fb	g: With this convention, each one of the following sets:

ða; bÞ,ðb; cÞ,fbþg ¼ ða; bÞ,½bþ; cÞaða; cÞ;

ða; bÞ,ðb; cÞ,fb	g ¼ ða; b	�,ðb; cÞaða; cÞ

has two connected components, and the set

ða; bÞ,ðb; cÞ,fb	g,fbþg ¼ ða; bÞ,ðb; cÞ,fbg ¼ ða; cÞ

is connected.
We only use this convention in order to study the sets of continuity of functions:

we want that if fACðAÞ and fACðBÞ; where A and B are union of intervals, then
fACðA,BÞ: With the usual definition of continuity in an interval, if
fACð½a; bÞÞ-Cð½b; c�Þ then we do not have fACð½a; c�Þ: Of course, we have

fACð½a; c�Þ if and only if fACð½a; b	�Þ-Cð½bþ; c�Þ; where, by definition, Cð½bþ; c�Þ ¼
Cð½b; c�Þ and Cð½a; b	�Þ ¼ Cð½a; b�Þ: This idea can be formalized with a suitable
topological space.

Let us introduce some notation. We denote by OðjÞ the set of j-regular points or

half-points, i.e., yAOðjÞ if and only if y is j-regular, we say that yþAOðjÞ if and only if

y is right j-regular, and we say that y	AOðjÞ if and only if y is left j-regular.

Obviously, OðkÞ ¼ | and Ojþ1,?,OkDOðjÞ: Observe that OðjÞ depends on p (see

Definition 6).

Remark. If 0pjok and I is an interval, IDOðjÞ; then the set IWðOjþ1,?,OkÞ is

discrete (see the Remark before Definition 7 in [RARP1]).

Definition 7. We say that a function h belongs to the class AClocðOðjÞÞ if hAAClocðIÞ
for every connected component I of OðjÞ:

Definition 8. We say that the vectorial measure m ¼ ðm0;y; mkÞ is p-admissible if

ðmjÞsðRWOðjÞÞ ¼ 0 for 1pjpk:
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We use the letter p in p-admissible in order to emphasize the dependence on p

(recall that OðjÞ depends on p).

Remark. (1) There is no condition on suppðm0Þs:
(2) We have ðmkÞs 
 0; since OðkÞ ¼ |:
(3) Every absolutely continuous measure is p-admissible.

Definition 9 (Sobolev space). Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a p-

admissible vectorial measure. We define the Sobolev space W k;pðD; mÞ as the space of
equivalence classes of

V k;pðD; mÞ :¼ f f : D-C=f ðjÞAAClocðOðjÞÞ for 0pjok and

jj f ðjÞjjLpðD;mjÞoN for 0pjpkg

with respect to the seminorm

jj f jjW k;pðD;mÞ :¼
Xk

j¼0

jj f ðjÞjjp
LpðD;mjÞ

 !1=p

:

Remark. (1) This definition is natural since when the ðmjÞs-measure of the set where

j f ðjÞj is not continuous is positive, the integral
R
j f ðjÞjpdðmjÞs does not make sense.

(2) If we consider Sobolev spaces with real valued functions every result in this
paper also holds.

At this moment we can consider also norms as follows:

jj f jjp ¼
Z 1

	1

j f jp þ
Z 0

	1

jxjp	1j f 0jp þ
Z 1

0

j f 0jp þ j f ð0þÞjp;

jj f jjp ¼
Z 1

0

j f jp þ
Z 1

0

j f 0jp þ j f ð0þÞjp:

In the second example, we can write j f ð0Þjp instead of j f ð0þÞjp; since f is not defined
at the left of 0; and then this causes no confusion. Obviously, we always write
ða þ bÞdx0

instead of adx	
0
þ bdxþ

0
:

Definition 10. Let us consider 1ppoN and m a p-admissible vectorial measure. Let
us define the space KðD; mÞ as

KðD; mÞ :¼ fg : Oð0Þ-C=gAVk;pðOð0Þ; mjOð0Þ Þ; jjgjj
W k;pðOð0Þ;mj

Oð0Þ Þ
¼ 0g:

KðD; mÞ is the equivalence class of 0 in W k;pðOð0Þ; mjOð0Þ Þ: It plays an important role

in the general theory of Sobolev spaces and in the study of the multiplication operator
in Sobolev spaces in particular (see [R2,RARP1,RARP2] and Theorems A and B).
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Definition 11. Let us consider 1ppoN and m a p-admissible vectorial measure. We
say that ðD; mÞ belongs to the class C0 if there exist compact sets Mn; which are a
finite union of compact intervals, such that

(i) Mn intersects at most a finite number of connected components of O1,?,Ok;
(ii) KðMn; mÞ ¼ f0g;
(iii) MnDMnþ1;
(iv) ,nMn ¼ Oð0Þ:

We say that ðD; mÞ belongs to the class C if there exists a measure m00 ¼
m0 þ

P
mAD cmdxm

with cm40; fxmgCOð0Þ; DDN and ðD; m0ÞAC0; where m0 ¼
ðm00; m1;y; mkÞ is minimal in the following sense: there exists fMng corresponding

to ðD; m0ÞAC0 such that if m000 ¼ m00 	 cm0
dxm0

with m0AD and m00 ¼ ðm000 ; m1;y; mkÞ;
then KðMn; m00Þaf0g if xm0

AMn:

Remark. (1) Condition ðD; mÞAC is not very restrictive. In fact, the proof of

Theorem A (see [RARP1, Theorem 4.3]) gives that if Oð0ÞWðO1,y,OkÞ has only a

finite number of points in each connected component of Oð0Þ; then ðD; mÞAC: If
furthermore KðD; mÞ ¼ f0g; we have ðD; mÞAC0:

(2) The proof of Theorem A gives that if for every connected component L of

O1,?,Ok we have Kð %L; mÞ ¼ f0g; then ðD; mÞAC0: Condition #supp m0j %L-Oð0ÞXk

implies Kð %L; mÞ ¼ f0g:
(3) Since the restriction of a function of KðD; mÞ to Mn is in KðMn;mÞ for every n;

then ðD; mÞAC0 implies KðD; mÞ ¼ f0g:
(4) If ðD; mÞAC0; then ðD; mÞAC; with m0 ¼ m:

The next results, proved in [RARP1], play a central role in the theory of
Sobolev spaces with respect to measures (see the proofs in [RARP1, Theorems 4.3
and 5.1]).

Theorem A. Let us suppose that 1ppoN and m ¼ ðm0;y; mkÞ is a p-admissible

vectorial measure. Let Kj be a finite union of compact intervals contained in OðjÞ; for

0pjok and %m a right (or left) completion of m: Then:
(a) If ðD; mÞAC0 there exist positive constants c1 ¼ c1ðK0;y;Kk	1Þ and c2 ¼

c2ð %m;K0;y;Kk	1Þ such that

c1
Xk	1

j¼0

jjgðjÞjjLNðKjÞpjjgjjW k;pðD;mÞ;

c2jjgjjW k;pðD; %mÞrjjgjjW k;pðD;mÞ 8gAVk;pðD; mÞ:

(b) If ðD; mÞAC there exist positive constants c3 ¼ c3ðK0;y;Kk	1Þ and c4 ¼
c4ð %m;K0;y;Kk	1Þ such that for every gAV k;pðD; mÞ; there exists g0AV k;pðD; mÞ;
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independent of K0;y;Kk	1; c3; c4 and %m; with

jjg0 	 gjjW k;pðD;mÞ ¼ 0;

c3
Xk	1

j¼0

jjgðjÞ
0 jjLNðKjÞpjjg0jjW k;pðD;mÞ ¼ jjgjjW k;pðD;mÞ;

c4jjg0jjW k;pðD; %mÞpjjgjjW k;pðD;mÞ:

Furthermore, if g0; f0 are these representatives of g; f ; respectively, we have for the

same constants c3; c4

c3
Xk	1

j¼0

jjgðjÞ
0 	 f

ðjÞ
0 jjLNðKjÞpjjg 	 f jjW k;pðD;mÞ;

c4jjg0 	 f0jjW k;pðD; %mÞpjjg 	 f jjW k;pðD;mÞ:

Remark. Theorem A is proved in [RARP1] with the additional hypothesis that
*m :¼ %m	 m is absolutely continuous, since [RARP1] only uses absolutely continuous
completions, but the same proof also works in the general case.

Theorem B. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a p-admissible vectorial

measure with ðD; mÞAC: Then the Sobolev space W k;pðD;mÞ is complete.

A result on density of smooth functions is the following. It is a particular case of
Theorem 4.1 in [RARP2]. We do not write the complete statement of Theorem 4.1 in
[RARP2] since we would need several definitions.

Theorem C. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a finite p-admissible

vectorial measure with D ¼ ½a; b�: If wk :¼ dmk=dxABpð½a; b�Þ; then CN

c ðRÞ is dense in

the Sobolev space W k;pð½a; b�; mÞ:

Remark. Under the hypotheses of Theorem C, m is p-admissible if and only if

ðmkÞs ¼ 0; since Oðk	1Þ ¼ ½a; b�:

We need more results appearing in [R2,RARP1,RARP2]. An immediate
modification of Lemma 3.3 in [RARP1] gives the following proposition.

Proposition A. Let 1ppoN and let m ¼ ðm0;y; mkÞ be a p-admissible vectorial

measure in ½a; b�; with wk0
:¼ dmk0

=dxABpðða; b�Þ for some 0ok0pk: If we construct a

right completion %m of m with respect to the point a taking e ¼ b 	 a; and %mj ¼ mj for

k0pjpk; then there exist positive constants cj such that

cj jjgðjÞjjLpð½a;b�; %mjÞp
Xk0

i¼j

jjgðiÞjjLpð½a;b�;miÞ þ
Xk0	1

i¼j

jgðiÞðbÞj;
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for all 0pjok0 and gAVk;pð½a; b�; mÞ: In particular, there is a positive constant c such

that

cjjgjjW k;pð½a;b�; %mÞpjjgjjW k;pð½a;b�;mÞ þ
Xk0	1

j¼0

jgðjÞðbÞj;

for all gAV k;pð½a; b�; mÞ:

Corollary 4.3 in [RARP1] gives the following result.

Corollary A. Let us suppose that 1ppoN and m ¼ ðm0;y; mkÞ is a p-admissible

vectorial measure. Let Kj be a finite union of compact intervals contained in OðjÞ; for

0pjok: Then:
(a) If ðD; mÞAC0 there exists a positive constant c1 ¼ c1ðK0;y;Kk	1Þ such that

c1
Xk	1

j¼0

jjgðjþ1ÞjjL1ðKjÞpjjgjjW k;pðD;mÞ 8gAV k;pðD; mÞ:

(b) If ðD; mÞAC there exists a positive constant c2 ¼ c2ðK0;y;Kk	1Þ such that for

every gAVk;pðD; mÞ; there exists g0AV k;pðD; mÞ (the same function as in Theorem A),
with

jjg0 	 gjjW k;pðD;mÞ ¼ 0;

c2
Xk	1

j¼0

jjgðjþ1Þ
0 jjL1ðKjÞpjjg0jjW k;pðD;mÞ ¼ jjgjjW k;pðD;mÞ:

Furthermore, if g0; f0 are these representatives of g; f ; respectively, we have for the

same constant c2

c2
Xk	1

j¼0

jjgðjþ1Þ
0 	 f

ðjþ1Þ
0 jjL1ðKjÞpjjg 	 f jjW k;pðD;mÞ:

A simple modification in the proof of Corollary A gives Corollary B. Recall

that we use the symbol W k	m;pðD; mÞ to denote the Sobolev space W k	m;p

ðD; ðmm;y; mkÞÞ:

Corollary B. Let us suppose that 1ppoN and m ¼ ðm0;y; mkÞ is a p-admissible

vectorial measure. For some 0ompk; assume that ðD; ðmm;y; mkÞÞAC0: Let K be a

finite union of compact intervals contained in Oðm	1Þ: Then there exists a positive

constant c1 ¼ c1ðKÞ such that

c1jjgjjL1ðKÞpjjgjjW k	m;pðD;mÞ 8gAV k	m;pðD; mÞ:

An immediate computation gives the following result.
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Lemma A. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a p-admissible vectorial

measure with

dmjþ1ðxÞpc
p
1jx 	 a0jpdmjðxÞ

for 0pjok; a0AR and x in an interval I : Let jACkðRÞ be such that supp j0D½l; lþ
t�; with maxfjl	 a0j; jlþ t 	 a0jgpc2t and jjjðjÞjjLNðIÞpc3t	j for 0pjpk: Then,

there is a positive constant c0 which is independent of I ; a0; l; t; m;j and g such that

jjjgjjW k;pðD;mÞpc0jjgjjW k;pðI ;mÞ;

for every gAW k;pðD; mÞ with suppðjgÞDI :

The next result is a consequence of Corollary 3.2 in [R2].

Corollary C. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a locally finite p-
admissible vectorial measure. Assume that there exist a0AR; an integer 0prok; an

open neighbourhood U of a0 and c40 such that

dmjþ1ðxÞpcjx 	 a0jpdmjðxÞ

for xAU and rpjok: Then a0 is neither right nor left r-regular.

The following theorems [RARP2, 4.2 and 4.3] give density results for measures
which can be obtained by ‘‘gluing’’ simpler ones.

Theorem D. Let us consider 1ppoN; 	NpaobocodpN: Let m ¼ ðm0;y;mkÞ
be a p-admissible vectorial measure in ½a; d�; and assume that there exists an interval

ID½b; c� with ðI ; mÞAC0 and mjðIÞoN for 0pjpk: Then CNðRÞ is dense in

W k;pð½a; d�; mÞ if and only if CNðRÞ is dense in W k;pð½a; c�; mÞ and W k;pð½b; d�; mÞ:

Theorem E. Let us consider 1ppoN and fang; fbng strictly increasing sequences of

real numbers ðn belonging to a finite set, to Z; Zþ or Z	Þ with anþ1obn for every n: Let

m ¼ ðm0;y; mkÞ be a p-admissible vectorial measure in ða; bÞ :¼ ,nðan; bnÞ; with

	NpaobpN: Assume that for each n there exists an interval InD½anþ1; bn� with

ðIn; mÞAC0 and mjðInÞoN for 0pjpk: Then CNðRÞ is dense in W k;pð½a;b�; mÞ if and

only if CNðRÞ is dense in every W k;pð½an; bn�; mÞ:

3. The case of compact support

Recall that under the hypothesis D compact, it is equivalent to prove the density in

W k;pðD; mÞ of CN

c ðRÞ; CNðRÞ or P:

Lemma 3.1. Let us consider 1pp1;y; pmoN and measures m1;y; mm in a

measurable space X : Let us assume that ðX ; mÞ satisfies the conclusion of Lusin
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Theorem, where m :¼ m1 þ?þ mm: Then any function in Lp1ðX ; m1Þ-?-LpmðX ; mmÞ
can be approximated in the norm

jj � jjX :¼ jj � jjLp1 ðX ;m1Þ þ?þ jj � jjLpm ðX ;mmÞ

by functions in CcðXÞ:

Remark. Recall that any finite measure in R satisfies the conclusion of Lusin
Theorem.

Proof. We denote by S the set of simple and measurable functions s on X with
complex values such that

mðfxAX : sðxÞa0gÞoN:

We prove now that any function in Lp1ðX ; m1Þ-?-LpmðX ; mmÞ can be approxi-
mated in the norm jj � jjX by functions in S: Let us consider a function f in

Lp1ðX ; m1Þ-?-LpmðX ; mmÞ: Without loss of generality, we can assume that fX0:
As usual, for nAN and 1pipn2n we define

En;i :¼ f 	1ð½ði 	 1Þ2	n; i2	nÞÞ; Fn :¼ f 	1ð½n;N�Þ;

sn :¼
Xn2n

i¼1

ði 	 1Þ2	nwEn;i
þ nwFn

:

Obviously we have 0psnpf ; jjsnjjXoN and snAS: The conclusion limn-N jj f 	
snjjX ¼ 0 is immediate by Dominated Convergence Theorem, since j f 	 snjpjpf pj for

1pjpm:
Therefore, it is enough to prove the lemma for functions in S: Take sAS and e40:

By hypothesis there exists gACcðXÞ such that jgðxÞjpjjsjjLNðX ;mÞ for every xAX ; and

gðxÞ ¼ sðxÞ except for a set of m-measure less than e: Therefore

jjg 	 sjjLpj ðX ;mjÞp2e1=pj jjsjjLNðX ;mÞ

for each 1pjpm: This finishes the proof. &

Lemma 3.2. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a finite p-admissible

vectorial measure with DD½a; b�: Then any function in W k;pðD; mÞ-W k;1ð½a; b�Þ can be

approximated by functions in CN

c ðRÞ with the norm W k;pðD; mÞ:

Proof. Take any fixed function f in W k;pðD; mÞ-W k;1ð½a; b�Þ: Since mk is finite,
Lemma 3.1 gives that for each e40 we can find a function h0ACcðða; bÞÞ with

jj f ðkÞ 	 h0jjLpðD;wkÞoe; jj f ðkÞ 	 h0jjL1ð½a;b�Þoe:

By convolution with an approximation of identity, we can find a function
hACN

c ðða; bÞÞ with

jjh 	 h0jjLNð½a;b�Þoe; jjh 	 h0jjL1ð½a;b�Þoe:
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Therefore, we have that

jjh 	 h0jjLpð½a;b�;wkÞomkð½a; b�Þ1=pe;

and then

jj f ðkÞ 	 hjjLpð½a;b�;wkÞoce; jj f ðkÞ 	 hjjL1ð½a;b�Þo2e:

Let us fix x0Aða; bÞ: The function

gðxÞ :¼ f ðx0Þ þ?þ f ðk	1Þðx0Þ
ðx 	 x0Þk	1

ðk 	 1Þ! þ
Z x

x0

hðtÞðx 	 tÞk	1

ðk 	 1Þ! dt;

belongs to CNðRÞ and we have

gðjÞðxÞ :¼ f ðjÞðx0Þ þ?þ f ðk	1Þðx0Þ
ðx 	 x0Þk	j	1

ðk 	 j 	 1Þ!

þ
Z x

x0

hðtÞ ðx 	 tÞk	j	1

ðk 	 j 	 1Þ! dt

for 0pjok: Therefore

jj f ðjÞ 	 gðjÞjjLpð½a;b�;mjÞp
Z b

a

Z b

a

jf ðkÞðtÞ 	 hðtÞjjx 	 tjk	j	1

ðk 	 j 	 1Þ! dt

 !p

dmjðxÞ
 !1=p

p cjj f ðkÞ 	 hjjL1ð½a;b�Þoce;

for 0pjok; since mjð½a; b�ÞoN: Hence, we have obtained

jj f 	 gjjW k;pðD;mÞoce

with gACNðRÞ: &

The following results are improvements of Theorem 4.1 in [RARP2].

Theorem 3.1. Let us consider 1ppoN and m ¼ ðm0; m1Þ a finite p-admissible vectorial

measure with D ¼ ½a; b� and w1 :¼ dm1=dxABpðða; bÞÞ: Then CN

c ðRÞ is dense in

W 1;pð½a; b�; mÞ:

Proof. Assume first that wkABpðða; b�Þ: If w1ABpð½a; b�Þ; the theorem is a

consequence of Theorem C. So we can assume that w1ABpðða; b�ÞWBpð½a; b�Þ; this
implies that a is not right 0-regular.

By Lemma 3.2 it is enough to show that any function f in V 1;pð½a; b�; mÞ can be

approximated by functions fn in V 1;pð½a; b�; mÞ-W 1;1ð½a; b�Þ; i.e. by functions

fnAV 1;pð½a; b�; mÞ with f 0
nAL1ð½a; b�Þ:

If fAV 1;pð½a; b�; mÞ; then fAAClocðða; b�Þ; since w1ABpðða; b�Þ: Let us choose

0otnp1=n such that

1
2
j f ða þ tnÞjpj f ðxÞj for every xAða; a þ 1=n�: ð3:1Þ
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Define the functions gn :¼ f 0w½aþtn;b� and

fnðxÞ :¼ f ðbÞ þ
Z x

b

gn:

Observe that Hölder inequality gives that f 0
n ¼ gnAL1ð½a; b�Þ:

jjgnjjL1ð½a;b�Þ ¼
Z b

aþtn

j f 0jw1=p
1 w

	1=p
1

p
Z b

aþtn

j f 0jpw1

� �1=p

jjw	1
1 jj1=p

L1=ðp	1Þð½aþtn;b�ÞoN;

since we have w1ABpðða; b�Þ and f 0ALpð½a; b�;w1Þ: It is clear thatZ b

a

j f 0 	 f 0
nj

p
w1 ¼

Z b

a

j f 0 	 gnjpw1 ¼
Z aþtn

a

j f 0jpw1-0

as n-N: Observe that m0ðfagÞ ¼ 0; since a is not right 0-regular and m is
p-admissible. This fact and (3.1) giveZ b

a

j f ðxÞ 	 fnðxÞjpdm0ðxÞ ¼
Z aþtn

a

j f ðxÞ 	 f ða þ tnÞjp dm0ðxÞ

p 3p

Z aþtn

a

j f ðxÞjp dm0ðxÞ-0

as n-N: Hence, the proof is finished in this case, since fn converges to f in

W 1;pð½a; b�; mÞ and f 0
n ¼ gnAL1ð½a; b�Þ:

A symmetric argument gives the case wkABpð½a; bÞÞ: The general case is easy now.

Choose a compact interval I ¼ ½a; b�Cða; bÞDOð0Þ: Then V1;pð½a; b�; mÞCCðIÞ and

V 1;pð½a; b�; mÞ ¼ V1;pð½a; b�; *mÞ; with *m ¼ ð *m0; m1Þ and d *m0 ¼ dm0 þ wI dx: We have that

KðI ; *mÞ ¼ f0g (see Remark 2 to Definition 11) and even ðI ; *mÞAC0; since Oð0ÞWO1

restricted to I is the empty set (see Remark 1 to Definition 11). We have proved that

CN

c ðRÞ is dense in W 1;pð½a; b�; *mÞ and W 1;pð½a; b�; *mÞ: Since ðI ; *mÞAC0; Theorem D

gives that CN

c ðRÞ is dense in W 1;pð½a; b�; *mÞ and therefore in W 1;pð½a; b�; mÞ: &

Theorem 3.2. Let us consider 1ppoN; 0ompk and m ¼ ðm0;y; mkÞ a finite p-

admissible vectorial measure with D ¼ ½a; b� and CN

c ðRÞ dense in W k	m;pð½a; b�; mÞ:
Assume that ð½a; b�; ðmm;y; mkÞÞAC0 if mok: Assume also that we have either:

(1) Oðm	1Þ ¼ ½a; b�;
(2) Oðm	1Þ ¼ ða; b� and there exists e40 such that mj½a;aþe� is a right completion of the

vectorial measure ð0;y; 0; mm;y; mkÞ:
Then CN

c ðRÞ is dense in W k;pð½a; b�; mÞ:

Remark. The same conclusion is true if we change (2) by ð20Þ: Oðm	1Þ ¼ ½a; bÞ and
there exists e40 such that mj½b	e;b� is a left completion of the vectorial measure

ð0;y; 0; mm;y; mkÞ:

J.M. Rodrı́guez / Journal of Approximation Theory 120 (2003) 185–216 201



Proof. Consider case (1). If m ¼ k; then Oðk	1Þ ¼ ½a; b� gives wkABpð½a; b�Þ and

Theorem C gives the result. Assume now 0omok: Given a function

fAV k;pð½a; b�;mÞ; we can choose a sequence fgngCCN

c ðRÞ converging to f ðmÞ in

W k	m;pð½a; b�; mÞ: Define

fnðxÞ :¼ f ðbÞ þ?þ f ðm	1ÞðbÞ ðx 	 bÞm	1

ðm 	 1Þ! þ
Z x

b

gnðtÞ
ðx 	 tÞm	1

ðm 	 1Þ! dt:

It is clear that

f ðjÞ
n ðxÞ ¼ f ðjÞðbÞ þ?þ f ðm	1ÞðbÞ ðx 	 bÞm	j	1

ðm 	 j 	 1Þ!

þ
Z x

b

gnðtÞ
ðx 	 tÞm	j	1

ðm 	 j 	 1Þ! dt ð3:2Þ

for 0pjpm 	 1: Since ð½a; b�; ðmm;y; mkÞÞAC0; Corollary B gives

jj f ðmÞ 	 f ðmÞ
n jjL1ð½a;b�Þpcjj f ðmÞ 	 f ðmÞ

n jjW k	m;pð½a;b�;mÞ:

It is immediate by (3.2) that

jj f ðjÞ 	 f ðjÞ
n jjLpð½a;b�;mjÞpcjj f ðmÞ 	 f ðmÞ

n jjL1ð½a;b�Þpcjj f ðmÞ 	 f ðmÞ
n jjW k	m;pð½a;b�;mÞ

for 0pjpm 	 1; since mj is finite, and we conclude that fn converges to f in

W k;pð½a; b�; mÞ:
Consider now case (2). Given a function fAVk;pð½a; b�; mÞ; let us consider a

sequence fgngCCN

c ðRÞ converging to f ðmÞ in W k	m;pð½a; b�; mÞ: Define the functions

hn by

hnðxÞ :¼ f ða þ eÞ þ?þ f ðm	1Þða þ eÞ ðx 	 a 	 eÞm	1

ðm 	 1Þ!

þ
Z x

aþe
gnðtÞ

ðx 	 tÞm	1

ðm 	 1Þ! dt:

We have

hðjÞ
n ðxÞ ¼ f ðjÞða þ eÞ þ?þ f ðm	1Þða þ eÞ ðx 	 a 	 eÞm	j	1

ðm 	 j 	 1Þ!

þ
Z x

aþe
gnðtÞ

ðx 	 tÞm	j	1

ðm 	 j 	 1Þ! dt

for 0pjpm 	 1:
If mok; since ð½a; b�; ðmm;y; mkÞÞAC0; Corollary B gives

jj f ðmÞ 	 hðmÞ
n jjL1ð½aþe;b�Þpcjj f ðmÞ 	 hðmÞ

n jjW k	m;pð½a;b�;mÞ:
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This inequality is also true for m ¼ k; since then wkABpðða; b�Þ: It is immediate that

jj f ðjÞ 	 hðjÞ
n jjLpð½aþe;b�;mjÞp cjj f ðmÞ 	 hðmÞ

n jjL1ð½aþe;b�Þ

p cjj f ðmÞ 	 hðmÞ
n jjW k	m;pð½a;b�;mÞ;

for 0pjpm 	 1: This gives

jj f 	 hnjjW k;pð½aþe;b�;mÞpcjj f ðmÞ 	 hðmÞ
n jjW k	m;pð½a;b�;mÞ: ð3:3Þ

Proposition A gives that there are a positive constant c and 0ok0pk such that

cjjgjjW k;pð½a;aþe�;mÞpjjgjjW k;pð½a;aþe�;ð0;y;0;mm;y;mkÞÞ þ
Xk0	1

j¼0

jgðjÞða þ eÞj

for all gAV k;pð½a; b�; mÞ; where a þ e is left ðk0 	 1Þ-regular. If k04m; since
ð½a; b�; ðmm;y; mkÞÞAC0; Theorem A gives

Xk0	1

j¼m

jgðjÞða þ eÞjpcjjgðmÞjjW k	m;pð½a;b�;mÞ

for all gAVk;pð½a; b�; mÞ: Consequently, we have for 0ok0pk;

cjjgjjW k;pð½a;aþe�;mÞpjjgðmÞjjW k	m;pð½a;b�;mÞ þ
Xm	1

j¼0

jgðjÞða þ eÞj

for all gAVk;pð½a; b�; mÞ: Since ðf 	 hnÞðjÞða þ eÞ ¼ 0; for 0pjpm 	 1; we have

jj f 	 hnjjW k;pð½a;aþe�;mÞpcjj f ðmÞ 	 hðmÞ
n jjW k	m;pð½a;b�;mÞ:

This inequality and (3.3) imply that hn converges to f in W k;pð½a; b�; mÞ: &

Theorem 3.3. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a finite p-admissible

vectorial measure with D ¼ ½a; b� and wk :¼ dmk=dxABpðða; b�Þ: Assume that we have

either:

(1) a is right ðk 	 2Þ-regular if kX2;
(2) there exists e40 such that mj½a;aþe� is a right completion of ð0;y; 0; mk	1; mkÞ if

kX2:

Then CN

c ðRÞ is dense in W k;pð½a; b�; mÞ:

Remark. The same conclusion is true if we change (2) by ð20Þ: there exists e40 such
that mj½b	e;b� is a left completion of the vectorial measure ð0;y; 0; mk	1; mkÞ if kX2:

Proof. If k ¼ 1 the result is Theorem 3.1. Therefore we can assume kX2: Choose a

compact interval ICða; b�DOðk	1Þ; then every function uAVk;pð½a; b�; mÞ verifies

uðk	1ÞACðIÞ and then u belongs to Vk;pð½a; b�; *mÞ with *m ¼ ðm0;y; mk	2; *mk	1; mkÞ and
d *mk	1 ¼ dmk	1 þ w

I
dx: We have that Kð½a; b�; ð *mk	1; mkÞÞ ¼ f0g (see Remark 2 to
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Definition 11) and even ð½a; b�; ð *mk	1; mkÞÞAC0; since Oðk	1ÞWOkDfa; bg (see Remark
1 to Definition 11).

Theorem 3.1 gives that CN

c ðRÞ is dense in W 1;pð½a; b�; *mÞ: Consequently, the

measure *m satisfies the hypotheses in Theorem 3.2 with m ¼ k 	 1; and we have that

CN

c ðRÞ is dense in W k;pð½a; b�; *mÞ and therefore in W k;pð½a; b�; mÞ: &

Theorem 3.4. Let us consider 1ppoN; a compact interval I and a finite p-admissible

vectorial measure m ¼ ðm0;y; mkÞ with D ¼ I : Assume that there exist a0AI ; an integer

0prok and positive constants c; d such that

(1) dmjþ1ðxÞpcjx 	 a0jpdmjðxÞ in ½a0 	 d; a0 þ d�-I for rpjok;

(2) wk :¼ dmk=dxABpðIWfa0gÞ;
(3) if r40; a0 is ðr 	 1Þ-regular.

Then CN

c ðRÞ is dense in W k;pðI ; mÞ:

Remark. Condition (1) means that mjþ1 is absolutely continuous with respect to mj in

½a0 	 d; a0 þ d�-I and its Radon–Nikodym derivative dmjþ1=dmj is less or equal than

cjx 	 a0jp: Proposition 3.2 in [R2] shows that this condition is not as restrictive as it
seems, since many vectorial weights with analytic singularities can be modified in
order to satisfy (1).

Proof. Without loss of generality, we can assume that a0 is an interior point of I ;

since the argument is simpler if a0A@I : Let us take fAVk;pðI ; mÞ: Consider now a
function jACN

c ðRÞ with j ¼ 1 in ½	1; 1�; j ¼ 0 in RWð	2; 2Þ; and 0pjp1 in R:

For each nAN; let us define jnðxÞ :¼ jðnðx 	 a0ÞÞ and hn :¼ ð1	 jnÞf ðrÞ: We have

jj f ðrÞ 	 hnjjW k	r;pðI ;mÞ ¼ jjjnf ðrÞjjW k	r;pðI ;mÞpc0jj f ðrÞjjW k	r;pð½a0	2=n;a0þ2=n�;mÞ;

since we are in the hypothesis of Lemma A, with l ¼ a0 	 2=n; t ¼ 4=n and
I ¼ ½a0 	 2=n; a0 þ 2=n�: observe that jl	 a0j ¼ jlþ t 	 a0j ¼ 2=n ¼ t=2 and

jjjðjÞ
n jjLNðRÞ ¼ njjjjðjÞjjLNðRÞ

p 4kmaxfjjjjjLNðRÞ; jjj0jjLNðRÞ;y; jjjðkÞjjLNðRÞgt	j:

Corollary C gives that a0 is neither right nor left r-regular; this fact implies

mrðfa0gÞ ¼ ? ¼ mkðfa0gÞ ¼ 0: Hence, we deduce that jj f ðrÞ 	 hnjjW k	r;pðI ;mÞ-0 as

n-N: Define mn :¼ ðm0;y; mk	1; m
n
kÞ; with dmn

k :¼ dmk þ w
½a0	1=n;a0þ1=n�

dx; hypothesis

(2) gives that dmn
k=dx ¼ wk þ w

½a0	1=n;a0þ1=n�
ABpðIÞ: Then Theorem C gives that each

function hn can be approximated by functions in CN

c ðRÞ with respect to the norm

W k	r;pðI ; mnÞ (since I is compact and m is finite) and therefore in W k	r;pðI ; mÞ: This

finishes the proof if r ¼ 0: Otherwise, hypothesis (2) and (3) give Oðr	1Þ ¼ I and

consequently f ðr	1ÞAACðIÞ:
Without loss of generality, we can assume that there exists e40 such that ½a0 	

e; a0 þ e� is contained in the interior of I and wrX1 in IW½a0 	 e; a0 þ e�: Otherwise,
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we can change m by mn with mn
j :¼ mj if jar and dmn

r :¼ dmr þ wIW½a0	e;a0þe� dx:

It is obvious that it is more complicated to approximate f in W k;pðI ; mnÞ than

in W k;pðI ; mÞ: Therefore, we have Kð½a; b�; ðmr;y; mkÞÞ ¼ f0g (see Remark 2

to Definition 11) and even ð½a; b�; ðmr;y; mkÞÞAC0; since ða; bÞðrÞW
ðða; bÞrþ1,?,ða; bÞkÞ has at most three points (see Remark 1 to Definition 11).

Let us consider a sequence fqngCCN

c ðRÞ converging to f ðrÞ in W k	r;pðI ; mÞ:
Corollary B gives

jj f ðrÞ 	 qnjjL1ðIÞpcjj f ðrÞ 	 qnjjW k	r;pðI ;mÞ:

For any fixed aAI ; the smooth functions defined by

QnðxÞ :¼ f ðaÞ þ f 0ðaÞðx 	 aÞ þ?þ f ðr	1ÞðaÞ ðx 	 aÞr	1

ðr 	 1Þ!

þ
Z x

a

qnðtÞ
ðx 	 tÞr	1

ðr 	 1Þ! dt

satisfy

jj f ðjÞ 	 QðjÞ
n jjLpðI ;mjÞpcjj f ðrÞ 	 qnjjL1ðIÞ

for 0pjor; and consequently

jj f 	 QnjjW k;pðI ;mÞp cjj f ðrÞ 	 qnjjL1ðIÞ þ jj f ðrÞ 	 qnjjW k	r;pðI ;mÞ

p cjj f ðrÞ 	 qnjjW k	r;pðI ;mÞ:

We conclude that Qn converges to f in W k;pðI ; mÞ: &

4. The case of non-compact support

Although the main interest in this section is the case of non-compact support, the
following result can be applied to the case of compact support.

Theorem 4.1. Let us consider 1ppoN and m ¼ ðm0;y; mkÞ a p-admissible

vectorial measure. Assume that there exist aAD and a positive constant c such

that

cjjgjjW k;pðD;mÞpjgðaÞj þ jg0ðaÞj þ?þ jgðk	1ÞðaÞj þ jjgðkÞjjLpðD;mkÞ ð4:1Þ

for every gAVk;pðD; mÞ: Then, P is dense in W k;pðD; mÞ if and only if P is dense in

LpðD; mkÞ:

Proof. We prove the non-trivial implication. Let us consider a fixed function

fAV k;pðD; mÞ: Assume that P is dense in LpðD; mkÞ; and choose a sequence fqng of
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polynomials which converges to f ðkÞ in LpðD; mkÞ: Then the polynomials

QnðxÞ :¼ f ðaÞ þ f 0ðaÞðx 	 aÞ þ?þ f ðk	1ÞðaÞ ðx 	 aÞk	1

ðk 	 1Þ!

þ
Z x

a

qnðtÞ
ðx 	 tÞk	1

ðk 	 1Þ! dt

satisfy

cjj f 	 QnjjW k;pðD;mÞpjj f ðkÞ 	 QðkÞ
n jjLpðD;mkÞ ¼ jj f ðkÞ 	 qnjjLpðD;mkÞ;

since ðf 	 QnÞðjÞðaÞ ¼ 0 for 0pjok; and we conclude that the sequence of

polynomials fQng converges to f in W k;pðD; mÞ: &

We show now that Theorem 4.1 is very useful finding a wide class of measures
satisfying (4.1). The following inequality can be found in [Mu2,M, p. 40].

Muckenhoupt inequality II. Let us consider 1ppoN and m0; m1 measures in ð0;NÞ
with w1 :¼ dm1=dx: Then there exists a positive constant c such thatZ x

0

gðtÞ dt

����
����

����
����
Lpðð0;NÞ;m0Þ

pcjjgjjLpðð0;NÞ;m1Þ

for any measurable function g in ð0;NÞ; if and only if

sup
r40

m0ð½r;NÞÞjjw	1
1 jjL1=ðp	1Þð½0;r�ÞoN:

Remark. A similar result is true for the intervals ða;NÞ and ð	N; aÞ; with aAR:

Lemma 4.1. Assume that w0ðxÞpc0xa0e	lxe
and w1ðxÞXc1xa1e	lxe

; for xXA;

w0AL1ð½0;A�Þ; w1ABpð½0;A�Þ; with 1ppoN; l; e; c0; c1;A40 and a0; a1AR: If

a0pa1 þ ðe	 1Þp; then w0;w1 satisfy Muckenhoupt inequality II.

Proof. First of all observe that

ðxaebxeÞ0 ¼ xa	1ebxeða þ bexeÞ:

This implies ðxaebxeÞ0^sign bxaþe	1ebxe
; as x-N; if ba0: ThereforeZ r

A

xaebxe
dx^raþ1	eebre if b40;Z

N

r

xaebxe
dx^raþ1	eebre if bo0
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as r-N: Hence, if 1opoN; we have as r-NZ r

0

w1ðxÞ	1=ðp	1Þ
dx^

Z r

A

w1ðxÞ	1=ðp	1Þ
dx

p c

Z r

A

x	a1=ðp	1Þelxe=ðp	1Þ dx^r1	e	a1=ðp	1Þelre=ðp	1Þ:

If p ¼ 1; we have for big r

jjw	1
1 jjLNð½0;r�Þpcr	a1elre :

Consequently, we have for 1ppoN

jjw	1
1 jjL1=ðp	1Þð½0;r�Þpcr	a1þð1	eÞðp	1Þelre

as r-N: Furthermore,Z
N

r

w0ðxÞ dxpc0

Z
N

r

xa0e	lxe
dx^ra0þ1	ee	lre :

The expression

m0ð½r;NÞÞjjw	1
1 jjL1=ðp	1Þð½0;r�Þ

is bounded for r in a compact set; it is bounded for big r; if

lim
r-N

ra0þ1	ee	lrer	a1þð1	eÞðp	1ÞelreoN:

This condition holds since a0pa1 þ ðe	 1Þp: &

Lemma 4.2. Assume that w0ðxÞpk0xb0 and w1ðxÞXk1xb1 ; for 0oxob; with

1ppoN; k0; k140; b1AR and b04	 1: If b0Xb1 	 p; then w0;w1 satisfy

Muckenhoupt inequality I, with a ¼ 0:

Proof. If 1opoN and b14p 	 1; we haveZ b

r

w1ðxÞ	1=ðp	1Þ
dxpc

Z b

r

x	b1=ðp	1Þ dx^r1	b1=ðp	1Þ:

If p ¼ 1 and b140; we have

jjw	1
1 jjLNð½r;b�Þpcr	b1 :

Consequently, we have for 1ppoN and b14p 	 1

jjw	1
1 jjL1=ðp	1Þð½r;b�Þpcr	b1þp	1:

Furthermore, since b0 þ 140; we obtainZ r

0

w0ðxÞ dxpk0

Z r

0

xb0 dx^rb0þ1:

If b14p 	 1; the expression

FðrÞ :¼ m0ðð0; r�Þjjw	1
1 jjL1=ðp	1Þð½r;b�Þ;

J.M. Rodrı́guez / Journal of Approximation Theory 120 (2003) 185–216 207



is bounded for rA½e; b� (with e40); it is bounded for rAð0; eÞ; if
lim

r-0þ
rb0þ1r	b1þp	1oN:

This condition holds since b0Xb1 	 p: If b1pp 	 1; we obtain similarly that FðrÞ is
bounded since b0 þ 140 and

FðrÞpcrb0þ1 log
1

r

� �p	1

for small r:
The following result is well known for p ¼ 2 (see e.g. [F, Chapter II]). It is also

known for pa2 but I have found no reference for it. I include a proof for the sake of
completeness. &

Lemma 4.3. Consider a scalar finite measure m in R: Assume that we have either:

(1) there exists t40 such that etjxjAL1ðmÞ;
(2) supp mD½0;NÞ and there exists t40 such that et

ffiffi
x

p
AL1ðmÞ:

Then, the polynomials are dense in LpðmÞ for 1ppoN:

Proof. Denote by PpðmÞ the closure of P in LpðmÞ: Consider hypothesis (1). We show

first that if gALqðmÞ with 1oqpN and
R

xngðxÞ dmðxÞ ¼ 0 for every nAN; then

g ¼ 0 m-almost everywhere. For such g; consider the Fourier transform F of g dm

FðzÞ :¼
Z

eixzgðxÞ dmðxÞ:

Observe that we have

jeixzgðxÞjpjgðxÞjejxIm zjpjgðxÞjejxjtðq	1Þ=q;

if jIm zjotðq 	 1Þ=q: Hölder inequality givesZ
jgðxÞjejxjtðq	1Þ=q dmðxÞp jjgjjLqðmÞjjejxjtðq	1Þ=qjjLq=ðq	1ÞðmÞ

p jjgjjLqðmÞjjetjxjjjðq	1Þ=q

L1ðmÞ ;

and this implies that F is a holomorphic function in fzAC : jIm zjotðq 	 1Þ=qg: We
also have for each nAN

F ðnÞðzÞ ¼
Z

eixzðixÞn
gðxÞ dmðxÞ; F ðnÞð0Þ ¼ in

Z
xngðxÞ dmðxÞ ¼ 0:

Therefore F (the Fourier transform of g dm) is identically 0; and consequently g ¼ 0
m-almost everywhere.

If fALpðmÞWPpðmÞ; then there exists GAðLpðmÞÞ0 such that GðPÞ ¼ 0 and Gðf Þa0:

Since m is s-finite, there exist gALqðmÞ with q :¼ p=ðp 	 1Þ41 and GðhÞ ¼
R

hg dm for

every hALpðmÞ: In particular, we have GðxnÞ ¼
R

xng dm ¼ 0 for every nAN: This fact

implies g ¼ 0: Consequently Gðf Þ ¼ 0 and we deduce PpðmÞ ¼ LpðmÞ; for 1ppoN:
This finishes the proof if we assume hypothesis (1).
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Consider now hypothesis (2). There exists a unique measure mn in R symmetric

with respect to 0 and verifying
R

f ðxÞ dmðxÞ ¼
R

f ðx2Þ dmnðxÞ for every fAL1ðmÞ:
Since mn satisfies (1), given any function fALpðmÞ; there exists a sequence fhngCP

with limn-N

R
j f ðx2Þ 	 hnðxÞjpdmnðxÞ ¼ 0: Consequently, we have that there exists a

sequence fHngCP such that

Z
j f ðx2Þ 	 hnðxÞjpdmnðxÞ

� �1=p

X

Z
f ðx2Þ 	 hnðxÞ þ hnð	xÞ

2

����
����
p

dmnðxÞ
� �1=p

¼
Z

j f ðx2Þ 	 Hnðx2ÞjpdmnðxÞ
� �1=p

¼
Z

j f ðxÞ 	 HnðxÞjpdmðxÞ
� �1=p

;

and this finishes the proof. &

These lemmas give the following results.

Proposition 4.1. Consider 1ppoN and a vectorial weight w in ð0;NÞ; with

(1) wjðxÞpcjx
bj ; for 0pjok; wkðxÞXckxbk ; in ð0; aÞ;

(2) wjðxÞpcjx
aþðk	jÞðe	1Þpe	lxe

; for 0pjok; wkðxÞXckxae	lxe
; in ða;NÞ;

where aAR; a; e; l; cj40 and bj4	 1; for 0pjpk: Then the polynomials are dense in

W k;pð½0;NÞ;wÞ if they are dense in Lpðð0;NÞ;wkÞ and bjXbk 	 ðk 	 jÞp; for 0pjok:

Proof. An induction argument with Lemma 4.1 in ða;NÞ instead of ð0;NÞ; gives for
0pjok and fAV k;pð½a;NÞ;wÞ;

Z
N

a

f ðjÞðxÞ 	 f ðjÞðaÞ 	?	 f ðk	1ÞðaÞ ðx 	 aÞk	j	1

ðk 	 j 	 1Þ!

�����
�����
p

wjðxÞ dx

pc

Z
N

a

j f ðkÞðxÞjpwkðxÞ dx;

and therefore

cjj f ðjÞjjLpðða;NÞ;wjÞpjj f ðkÞjjLpðða;NÞ;wkÞ þ
Xk	1

i¼j

j f ðiÞðaÞj

for 0pjok and fAVk;pð½a;NÞ;wÞ: Consequently, we have

cjj f jjW k;pð½a;NÞ;wÞpjj f ðkÞjjLpðða;NÞ;wkÞ þ
Xk	1

j¼0

j f ðjÞðaÞj ð4:2Þ
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for all fAV k;pð½a;NÞ;wÞ: If we use now Lemma 4.2 in ð0; aÞ; a similar argument
gives

cjj f jjW k;pð½0;a�;wÞpjj f ðkÞjjLpðð0;aÞ;wkÞ þ
Xk	1

j¼0

j f ðjÞðaÞj ð4:3Þ

for all fAVk;pð½0; a�;wÞ: Theorem 4.1, (4.2) and (4.3) give the proposition. &

We have the following immediate consequence of Proposition 4.1 and
Lemma 4.3.

Corollary 4.1. Consider 1ppoN and a vectorial weight w; with wjðxÞ^xaj e	lxe
in

ð0;NÞ; for 0pjpk; where eX1=2; l40 and aj4	 1; for 0pjpk: Then the

polynomials are dense in W k;pð½0;NÞ;wÞ if ak 	 ðk 	 jÞppajpak þ ðk 	 jÞðe	 1Þp;
for 0pjok:

Proposition 4.2. Consider 1ppoN and a vectorial weight w in R; with

(1) wjðxÞpcjjxjaþðk	jÞðe	1Þp
e	ljxje ; for 0pjok; wkðxÞXckjxjae	ljxje ; in ðB;NÞ;

(2) wjðxÞpcjjxja
0þðk	jÞðe0	1Þp

e	l0 jxje
0
; for 0pjok; wkðxÞXckjxja

0
e	l0 jxje

0
; in ð	N;	AÞ;

(3) wjðxÞAL1ð½	A;B�Þ; for 0pjpk; wkðxÞABpð½	A;B�Þ;
where a; a0AR; e; e0X1 and A;B; l; l0; cj40; for 0pjpk: Then the polynomials are

dense in W k;pðR;wÞ if they are dense in LpðR;wkÞ:

Remark. The same result is true for eX1=2 if we change R by ð0;NÞ:

Proof. The argument is similar to the one in Proposition 4.1, with 0 instead of a: In
this case, we only use Lemma 4.1. &

We obtain the following consequence of Proposition 4.2 and Lemma 4.3.

Corollary 4.2. Consider 1ppoN and a vectorial weight w in R; with

wjðxÞ^jxjaj e	ljxje in R; for 0pjpk; where eX1; l40 and aj4	 1; for 0pjpk:

Assume also that akop 	 1 if p41; and akp0 if p ¼ 1: Then the polynomials are dense

in W k;pðR;wÞ if ajpak þ ðk 	 jÞðe	 1Þp; for 0pjok:

We can obtain similar results for weights of fast decreasing degree. The following
results are not sharp since the sharp results are hard to write and do not involve any
new idea.

Define inductively the functions expl1;y;ln
as follows:

explðtÞ :¼ expðltÞ; expl1;y;ln
ðtÞ :¼ expðl1expl2;y;ln

ðtÞÞ:
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Lemma 4.4. Consider 1ppoN and a scalar weight wðxÞ^exp	l1;l2;y;ln
ðxeÞ in ð0;NÞ;

where n41 and e; l1; l2;y; ln40: Then w;w satisfy Muckenhoupt inequality II.

Proof. A straightforward computation shows that the derivative of the function

x1	e
Yn

i¼2

exp	li ;liþ1;y;ln
ðxeÞ

converges to zero as x-N: Now, if b is any non-zero real number, we have that

d

dx
ðexpb;l2;y;ln

ðxeÞx1	e
Yn

i¼2

exp	li ;liþ1;y;ln
ðxeÞÞ^sign b expb;l2;y;ln

ðxeÞ

in ð1;NÞ: Hence we have thatZ
N

r

w^exp	l1;l2;y;ln
ðreÞr1	e

Yn

i¼2

exp	li ;liþ1;y;ln
ðreÞ;

jjw	1jj1=ðp	1Þ
L1=ðp	1Þð½0;r�Þ^expl1=ðp	1Þ;l2;y;ln

ðreÞr1	e
Yn

i¼2

exp	li ;liþ1;y;ln
ðreÞ

in ð1;NÞ if 1opoN: Consequently, we have

jjw	1jjL1=ðp	1Þð½0;r�Þ^expl1;l2;y;ln
ðreÞ r1	e

Yn

i¼2

exp	li ;liþ1;y;ln
ðreÞ

 !p	1

in ð1;NÞ if 1opoN: The result for p ¼ 1 is trivial. ThereforeZ
N

r

w

� �
jjw	1jjL1=ðp	1Þð½0;r�Þ^ r1	e

Yn

i¼2

exp	li ;liþ1;y;ln
ðreÞ

 !p

in ð1;NÞ if 1ppoN: This finishes the proof, since wAL1ðð0;NÞÞ: &

Proposition 4.3. Consider 1ppoN and a vectorial weight w; with

wjðxÞpcj exp	l1;l2;y;ln
ðjxjeÞ in R; for 0pjok; wkðxÞXck exp	l1;l2;y;ln

ðjxjeÞ in R;

where n41 and e; l1; l2;y; ln; c0; c1;y; ck40: Then the polynomials are dense in

W k;pðR;wÞ if they are dense in LpðR;wkÞ:

Remark. The same result is true if we change R by ð0;NÞ:

Proof. It is enough to follow the argument in the proof of Proposition 4.1, using
Lemma 4.4 instead of Lemmas 4.1 and 4.2. &

The following result is an immediate consequence of Proposition 4.3 and Lemma 4.3.

Corollary 4.3. Consider 1ppoN and a vectorial weight w; with

wjðxÞ^exp	l1;l2;y;ln
ðjxjeÞ in R; for 0pjpk; where n41 and e; l1; l2;y; ln40: Then

the polynomials are dense in W k;pðR;wÞ:
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5. Comparable norms in generalized Sobolev spaces

It is important to know when two Sobolev norms are comparable. Here we prove
a result on comparable Sobolev norms.

It is not difficult to see that if m and n are s-finite measures in a measurable space
X such that LpðX ; mÞ ¼ LpðX ; nÞ; then m and n are comparable measures and the
norms in LpðX ; mÞ and LpðX ; nÞ are also comparable (see Lemma 5.1).

This is not true for Sobolev spaces, as shows the following example: if m is a finite
vectorial measure in ½a; b� verifying dmk ¼ dx and #supp m0Xk; we have that

W k;pð½a; b�; mÞ ¼ W k;pð½a; b�Þ (see [RARP1, Corollary 4.5]), and m0;y; mk	1 may not
be comparable to Lebesgue measure. However, we have also that the norms in these
two spaces are comparable by Corollary 4.5 in [RARP1] or Theorem 5.1.

The following result generalizes this situation.

Theorem 5.1. Let us consider 1ppoN and m ¼ ðm0;y;mkÞ; n ¼ ðn0;y; nkÞ s-finite

p-admissible vectorial measures, with absolutely continuous parts w; v; respectively.

Assume that we have W k;pðD; mÞ ¼ W k;pðD; nÞ and the additional conditions:

(1) ðmj þ njÞðOðjÞÞoN for 0pjok;

(2) OðjÞ ¼ Ojþ1,?,Ok and it is a finite union of bounded intervals, for 0pjok;

(3) w	1
j ; v	1

j AL1=ðp	1ÞðAjÞ if Aja|; where Aj is the open set Aj :¼ OjWOðjÞ for

0ojok and Ak :¼ Ok:

Then the norms in W k;pðD; mÞ and W k;pðD; nÞ are comparable.

Remark. The sets Oj can be distinct for wj and vj if 0pjok; but the condition

W k;pðD; mÞ ¼ W k;pðD; nÞ implies that OðjÞ and Aj (if 0pjpk) are the same for w and

v:

In order to prove Theorem 5.1 we need the following lemma.

Lemma 5.1. Let us consider s-finite measures m; n in a measurable space X such that

LpðX ; mÞ ¼ LpðX ; nÞ for some 1ppoN: Then m and n are comparable measures, the

norms in LpðX ; mÞ and LpðX ; nÞ are comparable and even LqðX ; mÞ ¼ LqðX ; nÞ for

every 1pqpN:

Proof. It is immediate that the sets with zero measure are the same for both
measures. Therefore, m and n are mutually absolutely continuous and we can write
dm ¼ h dn:

Assume that h is not comparable to 1 in X : Without loss of generality, we can

assume that h	1ðð0; t�Þ has positive n-measure for every t40: (The case h	1ð½t;NÞÞ
has positive n-measure for every t40 is similar, changing the roles of m and n:) Let us

consider a decreasing sequence ftng with limit 0 such that 0otno1=n and Xn :¼
h	1ððtnþ1; tn�Þ has positive n-measure for every n; and an increasing sequence of
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measurable sets An such that X ¼ ,nAn and 0onðAnÞoN for every n: Let us define
a sequence of measurable sets Yn :¼ Xn-Amn where mn are chosen in order to verify
0onðYnÞoN for every n:

We define now the function

g :¼
XN
n¼1

ðnnðYnÞÞ	1=pwYn
:

Since fYng are pairwise disjoint, we have that

jjgjjp
LpðnÞ ¼

XN
n¼1

ðnnðYnÞÞ	1nðYnÞ ¼
XN
n¼1

1

n
¼ N

and

jjgjjp
LpðmÞ ¼

XN
n¼1

ðnnðYnÞÞ	1

Z
Yn

h dn

p
XN
n¼1

ðnnðYnÞÞ	1
tnnðYnÞo

XN
n¼1

1

n2
oN:

We have a contradiction since gALpðX ; mÞWLpðX ; nÞ: Consequently m and n are
comparable measures, the norms in LpðX ; mÞ and LpðX ; nÞ are comparable and
LqðX ; mÞ ¼ LqðX ; nÞ for every 1pqpN: &

Proof of Theorem 5.1. Observe that ðmjÞsðAjÞ ¼ ðnjÞsðAjÞ ¼ 0 for 0ojpk; since m
and n are p-admissible measures. We show first that mj^nj in the set Aj for 0ojpk:

This is immediate if jAjj ¼ 0; otherwise let us define h0 :¼ ðdmj=dnjÞjAj
: Assume that

h0 is not comparable to 1 in Aj: Without loss of generality we can assume that

h	1
0 ðð0; t�Þ has positive Lebesgue measure for every t40: (The case h	1

0 ð½t;NÞÞ has

positive Lebesgue measure for every t40 is similar, changing the roles of mj and nj:)

Property (2) gives that Aj is a finite union of bounded intervals I1
j ,?,IN

j :

Therefore, there exists 1pipN such that I i
j-h	1

0 ðð0; t�Þ has positive Lebesgue

measure for every t40: Choose a proper subinterval IjCI i
j such that Ij-h	1

0 ðð0; t�Þ
has positive Lebesgue measure for every t40; and define h :¼ h0jIj

:

Let us consider a decreasing sequence ftng with limit 0 such that 0otno1=n and

Xn :¼ h	1ððtnþ1; tn�Þ has positive Lebesgue measure for every n; and an increasing
sequence of measurable sets An

j such that Ij ¼ ,nAn
j and 0onjðAn

j ÞoN for every n

(recall that the remark to Definition 2 gives that the Lebesgue measure is absolutely
continuous with respect to nj in Aj). Let us define a sequence of measurable sets

Yn :¼ Xn-Amn

j where mn are chosen in order to verify 0onjðYnÞoN for every n:

We define now the function

g :¼
XN
n¼1

ðnnjðYnÞÞ	1=pwYn
:
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Since fYng are pairwise disjoint, we have that

jjgjjp
LpðnjÞ ¼

XN
n¼1

ðnnjðYnÞÞ	1njðYnÞ ¼
XN
n¼1

1

n
¼ N

and

jjgjjp
LpðmjÞ

¼
XN
n¼1

ðnnjðYnÞÞ	1

Z
Yn

h dnj

p
XN
n¼1

ðnnjðYnÞÞ	1
tnnjðYnÞo

XN
n¼1

1

n2
oN:

Observe that gAL1ðRÞ:

jjgjjL1ðRÞ ¼
Z

Aj

gw
1=p
j w

	1=p
j pjjgjjLpðmjÞjjw

	1
j jj1=p

L1=ðp	1ÞðAjÞoN;

since we have (3) and gALpðmjÞ:
Recall that Ij is a proper subinterval of I i

j : Then we have either sup Ijosup I i
j or

inf I i
joinf Ij: Assume that a :¼ sup Ijob :¼ sup I i

j (the other case is symmetric). Let

us consider a function jACNðRÞ with 0pjp1; j ¼ 1 in ð	N; a� and j ¼ 0 in

½b;NÞ: If we take x0 :¼ inf I i
j ; then the function

GðxÞ :¼ jðxÞ
Z x

x0

gðtÞðx 	 tÞj	1

ðj 	 1Þ! dt

belongs to Cj	1ðRÞ and we have supp GD %Ii
j and G ¼ G0 ¼ ? ¼ GðjÞ ¼ 0 in RWAj :

Property (1) gives

miðAjÞpmiðOjÞpmiðOðiÞÞoN for 0piojpk:

This fact and gALpðmjÞ give GAW k;pðD; mÞ: Since we have geLpðnjÞ; we obtain that

GeW k;pðD; nÞ; which is a contradiction with W k;pðD; mÞ ¼ W k;pðD; nÞ: Therefore, we
have proved that mj^nj in Aj:

Let us consider a function fAV k;pðD; mÞ ¼ Vk;pðD; nÞ: We deduce by property (2)

that Oð0ÞWðO1,?,OkÞ ¼ @ðO1,?,OkÞ has only a finite number of points and
then ðD; mÞAC (see Remark 1 to Definition 11). Therefore, we can apply part (b) of

Theorem A and we have a representative f0 in the same class than f in W k;pðD; mÞ ¼
W k;pðD; nÞ such that

Xk	1

j¼0

jj f
ðjÞ
0 jjLNðOðjÞÞpcjj f jjW k;pðD;mÞ;

since we have property (2). Then we have by property (1)

Xk	1

j¼0

jj f ðjÞjjLpðOðjÞ;njÞ ¼
Xk	1

j¼0

jj f
ðjÞ
0 jjLpðOðjÞ;njÞpc

Xk	1

j¼0

jj f
ðjÞ
0 jjLNðOðjÞÞpcjj f jjW k;pðD;mÞ:
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We have also

Xk

j¼1

jj f ðjÞjjLpðAj ;njÞpc
Xk

j¼1

jj f ðjÞjjLpðAj ;mjÞpcjj f jjW k;pðD;mÞ:

Lemma 5.1 gives

jj f jjLpðDWOð0Þ;n0Þpcjj f jjLpðDWOð0Þ;m0Þpcjj f jjW k;pðD;mÞ:

These inequalities give that there exists a positive constant, independent of f such
that

jj f jjW k;pðD;nÞpcjj f jjW k;pðD;mÞ;

since we have

njðRWðOj,OðjÞÞÞ ¼ 0 for 0ojok;

n0ðRWDÞ ¼ 0; nkðRWAkÞ ¼ 0:

The reverse inequality is obtained by changing the roles of m and n: &
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[HKM] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic

Equations, Oxford Science Publ, Clarendon Press, Oxford, 1993.

[K] T. Kilpeläinen, Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A. I. Math.

19 (1994) 95–113.

[Ku] A. Kufner, Weighted Sobolev Spaces, Teubner Verlagsgesellschaft, Teubner-Texte zur

Mathematik (Band 31), 1980; also published by Wiley, 1985.

[KO] A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ.

Caroline 25 (3) (1984) 537–554.
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